Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  H15NH16TH15IH16 Structured version   Visualization version   GIF version

Theorem H15NH16TH15IH16 41587
 Description: Given 15 hypotheses and a 16th hypothesis, there exists a proof the 15 imply the 16th. (Contributed by Jarvin Udandy, 8-Sep-2016.)
Hypotheses
Ref Expression
H15NH16TH15IH16.1 𝜑
H15NH16TH15IH16.2 𝜓
H15NH16TH15IH16.3 𝜒
H15NH16TH15IH16.4 𝜃
H15NH16TH15IH16.5 𝜏
H15NH16TH15IH16.6 𝜂
H15NH16TH15IH16.7 𝜁
H15NH16TH15IH16.8 𝜎
H15NH16TH15IH16.9 𝜌
H15NH16TH15IH16.10 𝜇
H15NH16TH15IH16.11 𝜆
H15NH16TH15IH16.12 𝜅
H15NH16TH15IH16.13 jph
H15NH16TH15IH16.14 jps
H15NH16TH15IH16.15 jch
H15NH16TH15IH16.16 jth
Assertion
Ref Expression
H15NH16TH15IH16 (((((((((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ jph) ∧ jps) ∧ jch) → jth)

Proof of Theorem H15NH16TH15IH16
StepHypRef Expression
1 H15NH16TH15IH16.16 . 2 jth
21a1i 11 1 (((((((((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ jph) ∧ jps) ∧ jch) → jth)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator