![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version |
Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
9re | ⊢ 9 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 11298 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8re 11317 | . . 3 ⊢ 8 ∈ ℝ | |
3 | 1re 10251 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10265 | . 2 ⊢ (8 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 9 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 (class class class)co 6814 ℝcr 10147 1c1 10149 + caddc 10151 8c8 11288 9c9 11289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-i2m1 10216 ax-1ne0 10217 ax-rrecex 10220 ax-cnre 10221 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6817 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 |
This theorem is referenced by: 9cn 11320 10reOLD 11321 10posOLD 11335 7lt9 11435 6lt9 11436 5lt9 11437 4lt9 11438 3lt9 11439 2lt9 11440 1lt9 11441 9lt10OLD 11442 8lt10OLD 11443 9lt10 11885 8lt10 11886 0.999... 14831 0.999...OLD 14832 cos2bnd 15137 sincos2sgn 15143 cnfldfun 19980 tuslem 22292 setsmsds 22502 tnglem 22665 tngds 22673 log2tlbnd 24892 bposlem4 25232 bposlem5 25233 bposlem7 25235 bposlem8 25236 bposlem9 25237 ex-fv 27632 dp2lt10 29921 hgt750lem 31059 hgt750lem2 31060 hgt750leme 31066 problem5 31891 31prm 42040 wtgoldbnnsum4prm 42218 bgoldbnnsum3prm 42220 bgoldbtbndlem1 42221 |
Copyright terms: Public domain | W3C validator |