![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9p9e18 | Structured version Visualization version GIF version |
Description: 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9p9e18 | ⊢ (9 + 9) = ;18 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 11528 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 8nn0 11527 | . 2 ⊢ 8 ∈ ℕ0 | |
3 | 7nn0 11526 | . 2 ⊢ 7 ∈ ℕ0 | |
4 | df-9 11298 | . 2 ⊢ 9 = (8 + 1) | |
5 | df-8 11297 | . 2 ⊢ 8 = (7 + 1) | |
6 | 9p8e17 11838 | . 2 ⊢ (9 + 8) = ;17 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 11807 | 1 ⊢ (9 + 9) = ;18 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6814 1c1 10149 + caddc 10151 7c7 11287 8c8 11288 9c9 11289 ;cdc 11705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-dec 11706 |
This theorem is referenced by: 9t2e18 11875 prmlem2 16049 2503lem2 16067 2503lem3 16068 |
Copyright terms: Public domain | W3C validator |