![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8p8e16 | Structured version Visualization version GIF version |
Description: 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8p8e16 | ⊢ (8 + 8) = ;16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 11522 | . 2 ⊢ 8 ∈ ℕ0 | |
2 | 7nn0 11521 | . 2 ⊢ 7 ∈ ℕ0 | |
3 | 5nn0 11519 | . 2 ⊢ 5 ∈ ℕ0 | |
4 | df-8 11291 | . 2 ⊢ 8 = (7 + 1) | |
5 | df-6 11289 | . 2 ⊢ 6 = (5 + 1) | |
6 | 8p7e15 11823 | . 2 ⊢ (8 + 7) = ;15 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 11801 | 1 ⊢ (8 + 8) = ;16 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 (class class class)co 6796 1c1 10143 + caddc 10145 5c5 11279 6c6 11280 7c7 11281 8c8 11282 ;cdc 11700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-ltxr 10285 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-dec 11701 |
This theorem is referenced by: 8t2e16 11860 8t7e56 11867 prmlem2 16034 163prm 16039 1259lem1 16045 1259lem5 16049 4001lem2 16056 |
Copyright terms: Public domain | W3C validator |