![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8nn | Structured version Visualization version GIF version |
Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
8nn | ⊢ 8 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 11297 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7nn 11402 | . . 3 ⊢ 7 ∈ ℕ | |
3 | peano2nn 11244 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 8 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 (class class class)co 6814 1c1 10149 + caddc 10151 ℕcn 11232 7c7 11287 8c8 11288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-1cn 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 |
This theorem is referenced by: 9nn 11404 8nn0 11527 37prm 16050 43prm 16051 83prm 16052 317prm 16055 1259lem4 16063 1259lem5 16064 2503prm 16069 4001prm 16074 ipndx 16244 ipid 16245 ipsstr 16246 ressip 16255 phlstr 16256 tngip 22672 quart1cl 24801 quart1lem 24802 quart1 24803 log2tlbnd 24892 bposlem8 25236 lgsdir2lem2 25271 lgsdir2lem3 25272 2lgslem3a1 25345 2lgslem3b1 25346 2lgslem3c1 25347 2lgslem3d1 25348 2lgslem4 25351 2lgsoddprmlem2 25354 pntlemr 25511 pntlemj 25512 edgfid 26089 edgfndxnn 26090 edgfndxid 26091 baseltedgf 26092 ex-prmo 27648 hgt750lem 31059 hgt750lem2 31060 rmydioph 38101 fmtnoprmfac2lem1 42006 127prm 42043 mod42tp1mod8 42047 8even 42150 nnsum4primesevenALTV 42217 wtgoldbnnsum4prm 42218 bgoldbnnsum3prm 42220 bgoldbtbndlem1 42221 tgblthelfgott 42231 tgoldbachlt 42232 bgoldbachltOLD 42235 tgblthelfgottOLD 42237 tgoldbachltOLD 42238 |
Copyright terms: Public domain | W3C validator |