![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8cn | Structured version Visualization version GIF version |
Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8re 11268 | . 2 ⊢ 8 ∈ ℝ | |
2 | 1 | recni 10215 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2127 ℂcc 10097 8c8 11239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-i2m1 10167 ax-1ne0 10168 ax-rrecex 10171 ax-cnre 10172 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-iota 6000 df-fv 6045 df-ov 6804 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-7 11247 df-8 11248 |
This theorem is referenced by: 9m1e8 11306 8p2e10OLD 11337 8p2e10 11773 8t2e16 11817 8t5e40 11820 8t5e40OLD 11821 cos2bnd 15088 2exp16 15970 139prm 16004 163prm 16005 317prm 16006 631prm 16007 1259lem2 16012 1259lem3 16013 1259lem4 16014 1259lem5 16015 2503lem2 16018 2503lem3 16019 2503prm 16020 4001lem1 16021 4001lem2 16022 4001prm 16025 quart1cl 24751 quart1lem 24752 quart1 24753 quartlem1 24754 log2tlbnd 24842 log2ublem3 24845 log2ub 24846 bposlem8 25186 lgsdir2lem1 25220 lgsdir2lem3 25222 lgsdir2lem5 25224 2lgslem3a 25291 2lgslem3b 25292 2lgslem3c 25293 2lgslem3d 25294 2lgslem3a1 25295 2lgslem3b1 25296 2lgslem3c1 25297 2lgslem3d1 25298 2lgsoddprmlem1 25303 2lgsoddprmlem2 25304 2lgsoddprmlem3a 25305 2lgsoddprmlem3b 25306 2lgsoddprmlem3c 25307 2lgsoddprmlem3d 25308 ex-exp 27589 hgt750lem2 31010 fmtno5lem4 41947 257prm 41952 fmtnoprmfac2lem1 41957 fmtno4prmfac 41963 fmtno4nprmfac193 41965 fmtno5faclem3 41972 m3prm 41985 139prmALT 41990 127prm 41994 m7prm 41995 2exp11 41996 5tcu2e40 42011 evengpop3 42165 tgoldbachlt 42183 tgoldbachltOLD 42189 |
Copyright terms: Public domain | W3C validator |