![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version |
Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
7re | ⊢ 7 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 11290 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6re 11307 | . . 3 ⊢ 6 ∈ ℝ | |
3 | 1re 10245 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10259 | . 2 ⊢ (6 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2846 | 1 ⊢ 7 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 (class class class)co 6796 ℝcr 10141 1c1 10143 + caddc 10145 6c6 11280 7c7 11281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-i2m1 10210 ax-1ne0 10211 ax-rrecex 10214 ax-cnre 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-ov 6799 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 |
This theorem is referenced by: 7cn 11310 8re 11311 8pos 11327 5lt7 11417 4lt7 11418 3lt7 11419 2lt7 11420 1lt7 11421 7lt8 11422 6lt8 11423 7lt9 11430 6lt9 11431 7lt10OLD 11439 6lt10OLD 11440 7lt10 11881 6lt10 11882 bposlem8 25237 lgsdir2lem1 25271 hgt750lem2 31070 hgt750leme 31076 problem4 31900 mod42tp1mod8 42044 stgoldbwt 42189 sbgoldbwt 42190 nnsum3primesle9 42207 nnsum4primesoddALTV 42210 evengpoap3 42212 bgoldbtbndlem1 42218 bgoldbtbnd 42222 |
Copyright terms: Public domain | W3C validator |