![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7p2e9 | Structured version Visualization version GIF version |
Description: 7 + 2 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
7p2e9 | ⊢ (7 + 2) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11285 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 6807 | . . . 4 ⊢ (7 + 2) = (7 + (1 + 1)) |
3 | 7cn 11310 | . . . . 5 ⊢ 7 ∈ ℂ | |
4 | ax-1cn 10200 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10254 | . . . 4 ⊢ ((7 + 1) + 1) = (7 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2796 | . . 3 ⊢ (7 + 2) = ((7 + 1) + 1) |
7 | df-8 11291 | . . . 4 ⊢ 8 = (7 + 1) | |
8 | 7 | oveq1i 6806 | . . 3 ⊢ (8 + 1) = ((7 + 1) + 1) |
9 | 6, 8 | eqtr4i 2796 | . 2 ⊢ (7 + 2) = (8 + 1) |
10 | df-9 11292 | . 2 ⊢ 9 = (8 + 1) | |
11 | 9, 10 | eqtr4i 2796 | 1 ⊢ (7 + 2) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 (class class class)co 6796 1c1 10143 + caddc 10145 2c2 11276 7c7 11281 8c8 11282 9c9 11283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-addass 10207 ax-i2m1 10210 ax-1ne0 10211 ax-rrecex 10214 ax-cnre 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-ov 6799 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 |
This theorem is referenced by: 7p3e10OLD 11380 7p3e10 11809 7t7e49 11859 cos2bnd 15124 prmlem2 16034 139prm 16038 1259lem2 16046 1259lem3 16047 1259lem4 16048 1259lem5 16049 2503lem2 16052 4001lem4 16058 hgt750lem2 31070 fmtno5lem4 41993 fmtno5fac 42019 139prmALT 42036 |
Copyright terms: Public domain | W3C validator |