![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6p5lem | Structured version Visualization version GIF version |
Description: Lemma for 6p5e11 11638 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 |
6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 |
6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 |
6p5lem.4 | ⊢ 𝐵 = (𝐷 + 1) |
6p5lem.5 | ⊢ 𝐶 = (𝐸 + 1) |
6p5lem.6 | ⊢ (𝐴 + 𝐷) = ;1𝐸 |
Ref | Expression |
---|---|
6p5lem | ⊢ (𝐴 + 𝐵) = ;1𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6p5lem.4 | . . 3 ⊢ 𝐵 = (𝐷 + 1) | |
2 | 1 | oveq2i 6701 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1)) |
3 | 6p5lem.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 11342 | . . 3 ⊢ 𝐴 ∈ ℂ |
5 | 6p5lem.2 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
6 | 5 | nn0cni 11342 | . . 3 ⊢ 𝐷 ∈ ℂ |
7 | ax-1cn 10032 | . . 3 ⊢ 1 ∈ ℂ | |
8 | 4, 6, 7 | addassi 10086 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1)) |
9 | 1nn0 11346 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 6p5lem.3 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
11 | 6p5lem.5 | . . . 4 ⊢ 𝐶 = (𝐸 + 1) | |
12 | 11 | eqcomi 2660 | . . 3 ⊢ (𝐸 + 1) = 𝐶 |
13 | 6p5lem.6 | . . 3 ⊢ (𝐴 + 𝐷) = ;1𝐸 | |
14 | 9, 10, 12, 13 | decsuc 11573 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = ;1𝐶 |
15 | 2, 8, 14 | 3eqtr2i 2679 | 1 ⊢ (𝐴 + 𝐵) = ;1𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 (class class class)co 6690 1c1 9975 + caddc 9977 ℕ0cn0 11330 ;cdc 11531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-dec 11532 |
This theorem is referenced by: 6p5e11 11638 6p5e11OLD 11639 6p6e12 11640 7p4e11 11643 7p4e11OLD 11644 7p5e12 11645 7p6e13 11646 7p7e14 11647 8p3e11 11650 8p3e11OLD 11651 8p4e12 11652 8p5e13 11653 8p6e14 11654 8p7e15 11655 8p8e16 11656 9p2e11 11657 9p2e11OLD 11658 9p3e12 11659 9p4e13 11660 9p5e14 11661 9p6e15 11662 9p7e16 11663 9p8e17 11664 9p9e18 11665 |
Copyright terms: Public domain | W3C validator |