![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version |
Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
6nn | ⊢ 6 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 11296 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5nn 11401 | . . 3 ⊢ 5 ∈ ℕ | |
3 | peano2nn 11245 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 6 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2140 (class class class)co 6815 1c1 10150 + caddc 10152 ℕcn 11233 5c5 11286 6c6 11287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-1cn 10207 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 |
This theorem is referenced by: 7nn 11403 6nn0 11526 ef01bndlem 15134 sin01bnd 15135 cos01bnd 15136 6gcd4e2 15478 6lcm4e12 15552 83prm 16053 139prm 16054 163prm 16055 prmo6 16060 vscandx 16238 vscaid 16239 lmodstr 16240 ipsstr 16247 ressvsca 16255 lt6abl 18517 psrvalstr 19586 opsrvsca 19705 tngvsca 22672 sincos3rdpi 24489 1cubrlem 24789 quart1cl 24802 quart1lem 24803 quart1 24804 log2ub 24897 log2le1 24898 basellem5 25032 basellem8 25035 basellem9 25036 ppiublem1 25148 ppiublem2 25149 ppiub 25150 bpos1 25229 bposlem9 25238 itvndx 25560 itvid 25562 trkgstr 25564 ttgval 25976 ttglem 25977 ttgvsca 25981 ttgds 25982 eengstr 26081 ex-cnv 27627 ex-dm 27629 ex-dvds 27646 ex-gcd 27647 ex-lcm 27648 resvvsca 30165 hgt750lem 31060 rmydioph 38102 expdiophlem2 38110 algstr 38268 139prmALT 42040 31prm 42041 127prm 42044 6even 42149 gbowge7 42180 stgoldbwt 42193 sbgoldbwt 42194 mogoldbb 42202 sbgoldbo 42204 nnsum3primesle9 42211 nnsum4primeseven 42217 wtgoldbnnsum4prm 42219 bgoldbnnsum3prm 42221 zlmodzxzequa 42814 zlmodzxznm 42815 zlmodzxzequap 42817 zlmodzxzldeplem3 42820 zlmodzxzldep 42822 ldepsnlinclem2 42824 ldepsnlinc 42826 |
Copyright terms: Public domain | W3C validator |