![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6gcd4e2 | Structured version Visualization version GIF version |
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6gcd4e2 | ⊢ (6 gcd 4) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 11390 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 11602 | . . 3 ⊢ 6 ∈ ℤ |
3 | 4z 11612 | . . 3 ⊢ 4 ∈ ℤ | |
4 | gcdcom 15442 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
5 | 2, 3, 4 | mp2an 664 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
6 | 4cn 11299 | . . . 4 ⊢ 4 ∈ ℂ | |
7 | 2cn 11292 | . . . 4 ⊢ 2 ∈ ℂ | |
8 | 4p2e6 11363 | . . . 4 ⊢ (4 + 2) = 6 | |
9 | 6, 7, 8 | addcomli 10429 | . . 3 ⊢ (2 + 4) = 6 |
10 | 9 | oveq2i 6803 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
11 | 2z 11610 | . . . . 5 ⊢ 2 ∈ ℤ | |
12 | gcdadd 15454 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
13 | 11, 11, 12 | mp2an 664 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
14 | 2p2e4 11345 | . . . . . 6 ⊢ (2 + 2) = 4 | |
15 | 14 | oveq2i 6803 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
16 | gcdcom 15442 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
17 | 11, 3, 16 | mp2an 664 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
18 | 15, 17 | eqtri 2792 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
19 | 13, 18 | eqtri 2792 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
20 | gcdid 15455 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
22 | 2re 11291 | . . . . 5 ⊢ 2 ∈ ℝ | |
23 | 0le2 11312 | . . . . 5 ⊢ 0 ≤ 2 | |
24 | absid 14243 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
25 | 22, 23, 24 | mp2an 664 | . . . 4 ⊢ (abs‘2) = 2 |
26 | 21, 25 | eqtri 2792 | . . 3 ⊢ (2 gcd 2) = 2 |
27 | gcdadd 15454 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
28 | 3, 11, 27 | mp2an 664 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
29 | 19, 26, 28 | 3eqtr3ri 2801 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
30 | 5, 10, 29 | 3eqtr2i 2798 | 1 ⊢ (6 gcd 4) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2144 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 0cc0 10137 + caddc 10140 ≤ cle 10276 2c2 11271 4c4 11273 6c6 11275 ℤcz 11578 abscabs 14181 gcd cgcd 15423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-dvds 15189 df-gcd 15424 |
This theorem is referenced by: 6lcm4e12 15536 |
Copyright terms: Public domain | W3C validator |