Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  6gbe Structured version   Visualization version   GIF version

Theorem 6gbe 41984
Description: 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
6gbe 6 ∈ GoldbachEven

Proof of Theorem 6gbe
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 6even 41945 . 2 6 ∈ Even
2 3prm 15453 . . 3 3 ∈ ℙ
3 3odd 41942 . . . 4 3 ∈ Odd
4 gbpart6 41979 . . . 4 6 = (3 + 3)
53, 3, 43pm3.2i 1259 . . 3 (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))
6 eleq1 2718 . . . . 5 (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd ))
7 biidd 252 . . . . 5 (𝑝 = 3 → (𝑞 ∈ Odd ↔ 𝑞 ∈ Odd ))
8 oveq1 6697 . . . . . 6 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
98eqeq2d 2661 . . . . 5 (𝑝 = 3 → (6 = (𝑝 + 𝑞) ↔ 6 = (3 + 𝑞)))
106, 7, 93anbi123d 1439 . . . 4 (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (3 + 𝑞))))
11 biidd 252 . . . . 5 (𝑞 = 3 → (3 ∈ Odd ↔ 3 ∈ Odd ))
12 eleq1 2718 . . . . 5 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
13 oveq2 6698 . . . . . 6 (𝑞 = 3 → (3 + 𝑞) = (3 + 3))
1413eqeq2d 2661 . . . . 5 (𝑞 = 3 → (6 = (3 + 𝑞) ↔ 6 = (3 + 3)))
1511, 12, 143anbi123d 1439 . . . 4 (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (3 + 𝑞)) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))))
1610, 15rspc2ev 3355 . . 3 ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)))
172, 2, 5, 16mp3an 1464 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞))
18 isgbe 41964 . 2 (6 ∈ GoldbachEven ↔ (6 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞))))
191, 17, 18mpbir2an 975 1 6 ∈ GoldbachEven
Colors of variables: wff setvar class
Syntax hints:  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  (class class class)co 6690   + caddc 9977  3c3 11109  6c6 11112  cprime 15432   Even ceven 41862   Odd codd 41863   GoldbachEven cgbe 41958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433  df-even 41864  df-odd 41865  df-gbe 41961
This theorem is referenced by:  nnsum3primesle9  42007
  Copyright terms: Public domain W3C validator