MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5p5e10 Structured version   Visualization version   GIF version

Theorem 5p5e10 11809
Description: 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
5p5e10 (5 + 5) = 10

Proof of Theorem 5p5e10
StepHypRef Expression
1 df-5 11295 . . . 4 5 = (4 + 1)
21oveq2i 6826 . . 3 (5 + 5) = (5 + (4 + 1))
3 5cn 11313 . . . 4 5 ∈ ℂ
4 4cn 11311 . . . 4 4 ∈ ℂ
5 ax-1cn 10207 . . . 4 1 ∈ ℂ
63, 4, 5addassi 10261 . . 3 ((5 + 4) + 1) = (5 + (4 + 1))
72, 6eqtr4i 2786 . 2 (5 + 5) = ((5 + 4) + 1)
8 5p4e9 11380 . . 3 (5 + 4) = 9
98oveq1i 6825 . 2 ((5 + 4) + 1) = (9 + 1)
10 9p1e10 11709 . 2 (9 + 1) = 10
117, 9, 103eqtri 2787 1 (5 + 5) = 10
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  (class class class)co 6815  0cc0 10149  1c1 10150   + caddc 10152  4c4 11285  5c5 11286  9c9 11290  cdc 11706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-ltxr 10292  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-dec 11707
This theorem is referenced by:  5t2e10  11847  5t4e20  11850  2503lem2  16068  log2ublem3  24896  threehalves  29954  hgt750lem2  31061  bgoldbtbndlem1  42222
  Copyright terms: Public domain W3C validator