![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5p4e9 | Structured version Visualization version GIF version |
Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p4e9 | ⊢ (5 + 4) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 11294 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 6826 | . . 3 ⊢ (5 + 4) = (5 + (3 + 1)) |
3 | 5cn 11313 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 3cn 11308 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 10207 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10261 | . . 3 ⊢ ((5 + 3) + 1) = (5 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2786 | . 2 ⊢ (5 + 4) = ((5 + 3) + 1) |
8 | df-9 11299 | . . 3 ⊢ 9 = (8 + 1) | |
9 | 5p3e8 11379 | . . . 4 ⊢ (5 + 3) = 8 | |
10 | 9 | oveq1i 6825 | . . 3 ⊢ ((5 + 3) + 1) = (8 + 1) |
11 | 8, 10 | eqtr4i 2786 | . 2 ⊢ 9 = ((5 + 3) + 1) |
12 | 7, 11 | eqtr4i 2786 | 1 ⊢ (5 + 4) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6815 1c1 10150 + caddc 10152 3c3 11284 4c4 11285 5c5 11286 8c8 11289 9c9 11290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-addass 10214 ax-i2m1 10217 ax-1ne0 10218 ax-rrecex 10221 ax-cnre 10222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-iota 6013 df-fv 6058 df-ov 6818 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 |
This theorem is referenced by: 5p5e10OLD 11381 5p5e10 11809 139prm 16054 1259lem3 16063 1259lem4 16064 2503lem2 16068 4001lem1 16071 4001lem2 16072 hgt750lem2 31061 problem1 31887 problem2 31888 problem2OLD 31889 inductionexd 38974 139prmALT 42040 |
Copyright terms: Public domain | W3C validator |