HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem3 Structured version   Visualization version   GIF version

Theorem 5oalem3 28845
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem3.1 𝐴S
5oalem3.2 𝐵S
5oalem3.3 𝐶S
5oalem3.4 𝐷S
5oalem3.5 𝐹S
5oalem3.6 𝐺S
Assertion
Ref Expression
5oalem3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))

Proof of Theorem 5oalem3
StepHypRef Expression
1 anandir 907 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
2 5oalem3.1 . . . . . . 7 𝐴S
3 5oalem3.2 . . . . . . 7 𝐵S
4 5oalem3.5 . . . . . . 7 𝐹S
5 5oalem3.6 . . . . . . 7 𝐺S
62, 3, 4, 55oalem2 28844 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) → (𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)))
7 5oalem3.3 . . . . . . 7 𝐶S
8 5oalem3.4 . . . . . . 7 𝐷S
97, 8, 4, 55oalem2 28844 . . . . . 6 ((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔)) → (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))
106, 9anim12i 591 . . . . 5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
1110an4s 904 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
121, 11sylanb 490 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
132, 4shscli 28506 . . . . 5 (𝐴 + 𝐹) ∈ S
143, 5shscli 28506 . . . . 5 (𝐵 + 𝐺) ∈ S
1513, 14shincli 28551 . . . 4 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
167, 4shscli 28506 . . . . 5 (𝐶 + 𝐹) ∈ S
178, 5shscli 28506 . . . . 5 (𝐷 + 𝐺) ∈ S
1816, 17shincli 28551 . . . 4 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
1915, 18shsvsi 28556 . . 3 (((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
2012, 19syl 17 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
212sheli 28401 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
2221adantr 472 . . . . . 6 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ℋ)
237sheli 28401 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
2423adantr 472 . . . . . 6 ((𝑧𝐶𝑤𝐷) → 𝑧 ∈ ℋ)
2522, 24anim12i 591 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ))
264sheli 28401 . . . . . 6 (𝑓𝐹𝑓 ∈ ℋ)
2726adantr 472 . . . . 5 ((𝑓𝐹𝑔𝐺) → 𝑓 ∈ ℋ)
28 hvsubsub4 28247 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑓 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑓 ∈ ℋ)) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
2928anandirs 909 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
30 hvsubid 28213 . . . . . . . 8 (𝑓 ∈ ℋ → (𝑓 𝑓) = 0)
3130oveq2d 6830 . . . . . . 7 (𝑓 ∈ ℋ → ((𝑥 𝑧) − (𝑓 𝑓)) = ((𝑥 𝑧) − 0))
32 hvsubcl 28204 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
33 hvsub0 28263 . . . . . . . 8 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3432, 33syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3531, 34sylan9eqr 2816 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑧) − (𝑓 𝑓)) = (𝑥 𝑧))
3629, 35eqtrd 2794 . . . . 5 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3725, 27, 36syl2an 495 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3837eleq1d 2824 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
3938adantr 472 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
4020, 39mpbid 222 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cin 3714  (class class class)co 6814  chil 28106   + cva 28107  0c0v 28111   cmv 28112   S csh 28115   + cph 28118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-hilex 28186  ax-hfvadd 28187  ax-hvcom 28188  ax-hvass 28189  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvmulass 28194  ax-hvdistr1 28195  ax-hvdistr2 28196  ax-hvmul0 28197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291  df-sub 10480  df-neg 10481  df-nn 11233  df-grpo 27677  df-ablo 27729  df-hvsub 28158  df-hlim 28159  df-sh 28394  df-ch 28408  df-shs 28497
This theorem is referenced by:  5oalem4  28846
  Copyright terms: Public domain W3C validator