HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem1 Structured version   Visualization version   GIF version

Theorem 5oalem1 28843
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem1.1 𝐴S
5oalem1.2 𝐵S
5oalem1.3 𝐶S
5oalem1.4 𝑅S
Assertion
Ref Expression
5oalem1 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))

Proof of Theorem 5oalem1
StepHypRef Expression
1 simplll 815 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥𝐴)
2 5oalem1.1 . . . . . . . 8 𝐴S
32sheli 28401 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
43ad2antrr 764 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥 ∈ ℋ)
5 5oalem1.3 . . . . . . . 8 𝐶S
65sheli 28401 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
76adantr 472 . . . . . 6 ((𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅) → 𝑧 ∈ ℋ)
8 hvaddsub12 28225 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = (𝑧 + (𝑥 𝑧)))
983anidm23 1532 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = (𝑧 + (𝑥 𝑧)))
10 hvsubid 28213 . . . . . . . . 9 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
1110oveq2d 6830 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑥 + (𝑧 𝑧)) = (𝑥 + 0))
12 ax-hvaddid 28191 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑥 + 0) = 𝑥)
1311, 12sylan9eqr 2816 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = 𝑥)
149, 13eqtr3d 2796 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 + (𝑥 𝑧)) = 𝑥)
154, 7, 14syl2an 495 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑧 + (𝑥 𝑧)) = 𝑥)
16 5oalem1.4 . . . . . . 7 𝑅S
175, 16shsvai 28553 . . . . . 6 ((𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅) → (𝑧 + (𝑥 𝑧)) ∈ (𝐶 + 𝑅))
1817adantl 473 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑧 + (𝑥 𝑧)) ∈ (𝐶 + 𝑅))
1915, 18eqeltrrd 2840 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐶 + 𝑅))
201, 19elind 3941 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)))
21 simpllr 817 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑦𝐵)
225, 16shscli 28506 . . . . . 6 (𝐶 + 𝑅) ∈ S
232, 22shincli 28551 . . . . 5 (𝐴 ∩ (𝐶 + 𝑅)) ∈ S
24 5oalem1.2 . . . . 5 𝐵S
2523, 24shsvai 28553 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)) ∧ 𝑦𝐵) → (𝑥 + 𝑦) ∈ ((𝐴 ∩ (𝐶 + 𝑅)) + 𝐵))
2623, 24shscomi 28552 . . . 4 ((𝐴 ∩ (𝐶 + 𝑅)) + 𝐵) = (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))
2725, 26syl6eleq 2849 . . 3 ((𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)) ∧ 𝑦𝐵) → (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
2820, 21, 27syl2anc 696 . 2 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
29 eleq1 2827 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))))
3029ad2antlr 765 . 2 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))))
3128, 30mpbird 247 1 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cin 3714  (class class class)co 6814  chil 28106   + cva 28107  0c0v 28111   cmv 28112   S csh 28115   + cph 28118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-hilex 28186  ax-hfvadd 28187  ax-hvcom 28188  ax-hvass 28189  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvdistr1 28195  ax-hvdistr2 28196  ax-hvmul0 28197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291  df-sub 10480  df-neg 10481  df-grpo 27677  df-ablo 27729  df-hvsub 28158  df-sh 28394  df-shs 28497
This theorem is referenced by:  5oalem6  28848
  Copyright terms: Public domain W3C validator