Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem9 Structured version   Visualization version   GIF version

Theorem 4sqlem9 15857
 Description: Lemma for 4sq 15875. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem9.5 ((𝜑𝜓) → (𝐵↑2) = 0)
Assertion
Ref Expression
4sqlem9 ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))

Proof of Theorem 4sqlem9
StepHypRef Expression
1 4sqlem9.5 . . . . . . . 8 ((𝜑𝜓) → (𝐵↑2) = 0)
2 4sqlem5.2 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
3 4sqlem5.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
4 4sqlem5.4 . . . . . . . . . . . . 13 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
52, 3, 44sqlem5 15853 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
65simpld 482 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
76zcnd 11685 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
8 sqeq0 13134 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
97, 8syl 17 . . . . . . . . 9 (𝜑 → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
109biimpa 462 . . . . . . . 8 ((𝜑 ∧ (𝐵↑2) = 0) → 𝐵 = 0)
111, 10syldan 579 . . . . . . 7 ((𝜑𝜓) → 𝐵 = 0)
1211oveq2d 6809 . . . . . 6 ((𝜑𝜓) → (𝐴𝐵) = (𝐴 − 0))
132adantr 466 . . . . . . . 8 ((𝜑𝜓) → 𝐴 ∈ ℤ)
1413zcnd 11685 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
1514subid1d 10583 . . . . . 6 ((𝜑𝜓) → (𝐴 − 0) = 𝐴)
1612, 15eqtrd 2805 . . . . 5 ((𝜑𝜓) → (𝐴𝐵) = 𝐴)
1716oveq1d 6808 . . . 4 ((𝜑𝜓) → ((𝐴𝐵) / 𝑀) = (𝐴 / 𝑀))
185simprd 483 . . . . 5 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
1918adantr 466 . . . 4 ((𝜑𝜓) → ((𝐴𝐵) / 𝑀) ∈ ℤ)
2017, 19eqeltrrd 2851 . . 3 ((𝜑𝜓) → (𝐴 / 𝑀) ∈ ℤ)
213nnzd 11683 . . . . 5 (𝜑𝑀 ∈ ℤ)
223nnne0d 11267 . . . . 5 (𝜑𝑀 ≠ 0)
23 dvdsval2 15192 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2421, 22, 2, 23syl3anc 1476 . . . 4 (𝜑 → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2524adantr 466 . . 3 ((𝜑𝜓) → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2620, 25mpbird 247 . 2 ((𝜑𝜓) → 𝑀𝐴)
2721adantr 466 . . 3 ((𝜑𝜓) → 𝑀 ∈ ℤ)
28 dvdssq 15488 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2927, 13, 28syl2anc 573 . 2 ((𝜑𝜓) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
3026, 29mpbid 222 1 ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   class class class wbr 4786  (class class class)co 6793  ℂcc 10136  0cc0 10138   + caddc 10141   − cmin 10468   / cdiv 10886  ℕcn 11222  2c2 11272  ℤcz 11579   mod cmo 12876  ↑cexp 13067   ∥ cdvds 15189 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425 This theorem is referenced by:  4sqlem16  15871  2sqlem8a  25371
 Copyright terms: Public domain W3C validator