![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4sqlem7 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 15841. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem7 | ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 4sqlem5.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | 4sqlem5.4 | . . . . . . 7 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1, 2, 3 | 4sqlem5 15819 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
5 | 4 | simpld 477 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
6 | 5 | zred 11645 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | 2 | nnrpd 12034 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
8 | 7 | rphalfcld 12048 | . . . . 5 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ+) |
9 | 8 | rpred 12036 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
10 | 1, 2, 3 | 4sqlem6 15820 | . . . . 5 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
11 | 10 | simprd 482 | . . . 4 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
12 | 6, 9, 11 | ltled 10348 | . . 3 ⊢ (𝜑 → 𝐵 ≤ (𝑀 / 2)) |
13 | 10 | simpld 477 | . . . 4 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
14 | 9, 6, 13 | lenegcon1d 10772 | . . 3 ⊢ (𝜑 → -𝐵 ≤ (𝑀 / 2)) |
15 | 8 | rpge0d 12040 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
16 | lenegsq 14230 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) | |
17 | 6, 9, 15, 16 | syl3anc 1463 | . . 3 ⊢ (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) |
18 | 12, 14, 17 | mpbi2and 994 | . 2 ⊢ (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2)) |
19 | 2cnd 11256 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 19 | sqvald 13170 | . . . 4 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
21 | 20 | oveq2d 6817 | . . 3 ⊢ (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
22 | 2 | nncnd 11199 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
23 | 2ne0 11276 | . . . . 5 ⊢ 2 ≠ 0 | |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ≠ 0) |
25 | 22, 19, 24 | sqdivd 13186 | . . 3 ⊢ (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
26 | 22 | sqcld 13171 | . . . 4 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
27 | 26, 19, 19, 24, 24 | divdiv1d 10995 | . . 3 ⊢ (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
28 | 21, 25, 27 | 3eqtr4d 2792 | . 2 ⊢ (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
29 | 18, 28 | breqtrd 4818 | 1 ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 class class class wbr 4792 (class class class)co 6801 ℝcr 10098 0cc0 10099 + caddc 10102 · cmul 10104 < clt 10237 ≤ cle 10238 − cmin 10429 -cneg 10430 / cdiv 10847 ℕcn 11183 2c2 11233 ℤcz 11540 mod cmo 12833 ↑cexp 13025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-inf 8502 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-fl 12758 df-mod 12834 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 |
This theorem is referenced by: 4sqlem15 15836 4sqlem16 15837 2sqlem8 25321 |
Copyright terms: Public domain | W3C validator |