MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem12 Structured version   Visualization version   GIF version

Theorem 4sqlem12 15707
Description: Lemma for 4sq 15715. For any odd prime 𝑃, there is a 𝑘 < 𝑃 such that 𝑘𝑃 − 1 is a sum of two squares. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sqlem11.5 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlem11.6 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlem12 (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑘,𝑛,𝑣,𝐴   𝑛,𝐹   𝑢,𝑘,𝑛,𝑚,𝑁,𝑣   𝑃,𝑘,𝑚,𝑛,𝑢,𝑣   𝜑,𝑘,𝑚,𝑛,𝑢,𝑣   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑢,𝑚)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑘,𝑚)   𝑁(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem12
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
2 4sq.2 . . . 4 (𝜑𝑁 ∈ ℕ)
3 4sq.3 . . . 4 (𝜑𝑃 = ((2 · 𝑁) + 1))
4 4sq.4 . . . 4 (𝜑𝑃 ∈ ℙ)
5 4sqlem11.5 . . . 4 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
6 4sqlem11.6 . . . 4 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
71, 2, 3, 4, 5, 64sqlem11 15706 . . 3 (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅)
8 n0 3964 . . 3 ((𝐴 ∩ ran 𝐹) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹))
97, 8sylib 208 . 2 (𝜑 → ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹))
10 vex 3234 . . . . . . 7 𝑗 ∈ V
11 eqeq1 2655 . . . . . . . 8 (𝑢 = 𝑗 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑗 = ((𝑚↑2) mod 𝑃)))
1211rexbidv 3081 . . . . . . 7 (𝑢 = 𝑗 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃)))
1310, 12, 5elab2 3386 . . . . . 6 (𝑗𝐴 ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃))
14 abid 2639 . . . . . . . . 9 (𝑗 ∈ {𝑗 ∣ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} ↔ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣))
155rexeqi 3173 . . . . . . . . 9 (∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣) ↔ ∃𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}𝑗 = ((𝑃 − 1) − 𝑣))
16 oveq1 6697 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
1716oveq1d 6705 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑚↑2) mod 𝑃) = ((𝑛↑2) mod 𝑃))
1817eqeq2d 2661 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑢 = ((𝑛↑2) mod 𝑃)))
1918cbvrexv 3202 . . . . . . . . . . 11 (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑢 = ((𝑛↑2) mod 𝑃))
20 eqeq1 2655 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑢 = ((𝑛↑2) mod 𝑃) ↔ 𝑣 = ((𝑛↑2) mod 𝑃)))
2120rexbidv 3081 . . . . . . . . . . 11 (𝑢 = 𝑣 → (∃𝑛 ∈ (0...𝑁)𝑢 = ((𝑛↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃)))
2219, 21syl5bb 272 . . . . . . . . . 10 (𝑢 = 𝑣 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃)))
2322rexab 3402 . . . . . . . . 9 (∃𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}𝑗 = ((𝑃 − 1) − 𝑣) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
2414, 15, 233bitri 286 . . . . . . . 8 (𝑗 ∈ {𝑗 ∣ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
256rnmpt 5403 . . . . . . . . 9 ran 𝐹 = {𝑗 ∣ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣)}
2625eleq2i 2722 . . . . . . . 8 (𝑗 ∈ ran 𝐹𝑗 ∈ {𝑗 ∣ ∃𝑣𝐴 𝑗 = ((𝑃 − 1) − 𝑣)})
27 rexcom4 3256 . . . . . . . . 9 (∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
28 r19.41v 3118 . . . . . . . . . 10 (∃𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ (∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
2928exbii 1814 . . . . . . . . 9 (∃𝑣𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
3027, 29bitri 264 . . . . . . . 8 (∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
3124, 26, 303bitr4i 292 . . . . . . 7 (𝑗 ∈ ran 𝐹 ↔ ∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)))
32 ovex 6718 . . . . . . . . 9 ((𝑛↑2) mod 𝑃) ∈ V
33 oveq2 6698 . . . . . . . . . 10 (𝑣 = ((𝑛↑2) mod 𝑃) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
3433eqeq2d 2661 . . . . . . . . 9 (𝑣 = ((𝑛↑2) mod 𝑃) → (𝑗 = ((𝑃 − 1) − 𝑣) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))
3532, 34ceqsexv 3273 . . . . . . . 8 (∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
3635rexbii 3070 . . . . . . 7 (∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
3731, 36bitri 264 . . . . . 6 (𝑗 ∈ ran 𝐹 ↔ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
3813, 37anbi12i 733 . . . . 5 ((𝑗𝐴𝑗 ∈ ran 𝐹) ↔ (∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃) ∧ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))
39 elin 3829 . . . . 5 (𝑗 ∈ (𝐴 ∩ ran 𝐹) ↔ (𝑗𝐴𝑗 ∈ ran 𝐹))
40 reeanv 3136 . . . . 5 (∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) ↔ (∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃) ∧ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))
4138, 39, 403bitr4i 292 . . . 4 (𝑗 ∈ (𝐴 ∩ ran 𝐹) ↔ ∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))
42 eqtr2 2671 . . . . . 6 ((𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
4343ad2ant1 1102 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℙ)
44 prmnn 15435 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℕ)
46 nnm1nn0 11372 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4745, 46syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℕ0)
4847nn0red 11390 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℝ)
4945nnrpd 11908 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℝ+)
5047nn0ge0d 11392 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ (𝑃 − 1))
5145nnred 11073 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℝ)
5251ltm1d 10994 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) < 𝑃)
53 modid 12735 . . . . . . . . . . . . . . . 16 ((((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
5448, 49, 50, 52, 53syl22anc 1367 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
5554oveq1d 6705 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
56 simp2r 1108 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ (0...𝑁))
57 elfzelz 12380 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ ℤ)
59 zsqcl2 12981 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (𝑛↑2) ∈ ℕ0)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℕ0)
6160nn0red 11390 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℝ)
62 modlt 12719 . . . . . . . . . . . . . . . . . 18 (((𝑛↑2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝑛↑2) mod 𝑃) < 𝑃)
6361, 49, 62syl2anc 694 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) < 𝑃)
64 zsqcl 12974 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℤ → (𝑛↑2) ∈ ℤ)
6558, 64syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℤ)
6665, 45zmodcld 12731 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ∈ ℕ0)
6766nn0zd 11518 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ∈ ℤ)
68 prmz 15436 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6943, 68syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℤ)
70 zltlem1 11468 . . . . . . . . . . . . . . . . . 18 ((((𝑛↑2) mod 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑛↑2) mod 𝑃) < 𝑃 ↔ ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1)))
7167, 69, 70syl2anc 694 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑛↑2) mod 𝑃) < 𝑃 ↔ ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1)))
7263, 71mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1))
7372, 54breqtrrd 4713 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃))
74 modsubdir 12779 . . . . . . . . . . . . . . . 16 (((𝑃 − 1) ∈ ℝ ∧ (𝑛↑2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃) ↔ (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃))))
7548, 61, 49, 74syl3anc 1366 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃) ↔ (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃))))
7673, 75mpbid 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)))
77 simp3 1083 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))
7855, 76, 773eqtr4rd 2696 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃))
79 simp2l 1107 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ (0...𝑁))
80 elfzelz 12380 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
8179, 80syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ ℤ)
82 zsqcl 12974 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
8381, 82syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℤ)
8447nn0zd 11518 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℤ)
8584, 65zsubcld 11525 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑃 − 1) − (𝑛↑2)) ∈ ℤ)
86 moddvds 15038 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧ ((𝑃 − 1) − (𝑛↑2)) ∈ ℤ) → (((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2)))))
8745, 83, 85, 86syl3anc 1366 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2)))))
8878, 87mpbid 222 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))))
89 zsqcl2 12981 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℕ0)
9081, 89syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℕ0)
9190nn0cnd 11391 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℂ)
9247nn0cnd 11391 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℂ)
9360nn0cnd 11391 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℂ)
9491, 92, 93subsub3d 10460 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))) = (((𝑚↑2) + (𝑛↑2)) − (𝑃 − 1)))
9590, 60nn0addcld 11393 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℕ0)
9695nn0cnd 11391 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ)
9745nncnd 11074 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℂ)
98 1cnd 10094 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ∈ ℂ)
9996, 97, 98subsub3d 10460 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) − (𝑃 − 1)) = ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))
10094, 99eqtrd 2685 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))) = ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))
10188, 100breqtrd 4711 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))
102 nn0p1nn 11370 . . . . . . . . . . . . . 14 (((𝑚↑2) + (𝑛↑2)) ∈ ℕ0 → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ)
10395, 102syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ)
104103nnzd 11519 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ)
105 dvdssubr 15074 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)))
10669, 104, 105syl2anc 694 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)))
107101, 106mpbird 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1))
10845nnne0d 11103 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ≠ 0)
109 dvdsval2 15030 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ))
11069, 108, 104, 109syl3anc 1366 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ))
111107, 110mpbid 222 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ)
112 nnrp 11880 . . . . . . . . . . . . . 14 ((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℝ+)
113 nnrp 11880 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
114 rpdivcl 11894 . . . . . . . . . . . . . 14 (((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℝ+𝑃 ∈ ℝ+) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℝ+)
115112, 113, 114syl2an 493 . . . . . . . . . . . . 13 (((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ ∧ 𝑃 ∈ ℕ) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℝ+)
116103, 45, 115syl2anc 694 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℝ+)
117116rpgt0d 11913 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃))
118 elnnz 11425 . . . . . . . . . . 11 (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℕ ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 0 < ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃)))
119111, 117, 118sylanbrc 699 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℕ)
120119nnge1d 11101 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃))
12195nn0red 11390 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℝ)
122 2nn 11223 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
12323ad2ant1 1102 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℕ)
124 nnmulcl 11081 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
125122, 123, 124sylancr 696 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℕ)
126125nnred 11073 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℝ)
127126resqcld 13075 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) ∈ ℝ)
128 nnmulcl 11081 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ (2 · 𝑁) ∈ ℕ) → (2 · (2 · 𝑁)) ∈ ℕ)
129122, 125, 128sylancr 696 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈ ℕ)
130129nnred 11073 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈ ℝ)
131127, 130readdcld 10107 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) ∈ ℝ)
132 1red 10093 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ∈ ℝ)
133123nnsqcld 13069 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℕ)
134 nnmulcl 11081 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (2 · (𝑁↑2)) ∈ ℕ)
135122, 133, 134sylancr 696 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) ∈ ℕ)
136135nnred 11073 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) ∈ ℝ)
13790nn0red 11390 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℝ)
138133nnred 11073 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℝ)
13981zred 11520 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ ℝ)
140 elfzle1 12382 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚)
14179, 140syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ 𝑚)
142123nnred 11073 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℝ)
143 elfzle2 12383 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...𝑁) → 𝑚𝑁)
14479, 143syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚𝑁)
145 le2sq2 12979 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑁 ∈ ℝ ∧ 𝑚𝑁)) → (𝑚↑2) ≤ (𝑁↑2))
146139, 141, 142, 144, 145syl22anc 1367 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ≤ (𝑁↑2))
14758zred 11520 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ ℝ)
148 elfzle1 12382 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑁) → 0 ≤ 𝑛)
14956, 148syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ 𝑛)
150 elfzle2 12383 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑁) → 𝑛𝑁)
15156, 150syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛𝑁)
152 le2sq2 12979 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑁 ∈ ℝ ∧ 𝑛𝑁)) → (𝑛↑2) ≤ (𝑁↑2))
153147, 149, 142, 151, 152syl22anc 1367 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ≤ (𝑁↑2))
154137, 61, 138, 138, 146, 153le2addd 10684 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ≤ ((𝑁↑2) + (𝑁↑2)))
155133nncnd 11074 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℂ)
1561552timesd 11313 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2)))
157154, 156breqtrrd 4713 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ≤ (2 · (𝑁↑2)))
158 2lt4 11236 . . . . . . . . . . . . . . . 16 2 < 4
159 2re 11128 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
160159a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 2 ∈ ℝ)
161 4re 11135 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
162161a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 4 ∈ ℝ)
163133nngt0d 11102 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < (𝑁↑2))
164 ltmul1 10911 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ 4 ∈ ℝ ∧ ((𝑁↑2) ∈ ℝ ∧ 0 < (𝑁↑2))) → (2 < 4 ↔ (2 · (𝑁↑2)) < (4 · (𝑁↑2))))
165160, 162, 138, 163, 164syl112anc 1370 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 < 4 ↔ (2 · (𝑁↑2)) < (4 · (𝑁↑2))))
166158, 165mpbii 223 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) < (4 · (𝑁↑2)))
167 2cn 11129 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
168123nncnd 11074 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℂ)
169 sqmul 12966 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
170167, 168, 169sylancr 696 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
171 sq2 13000 . . . . . . . . . . . . . . . . 17 (2↑2) = 4
172171oveq1i 6700 . . . . . . . . . . . . . . . 16 ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2))
173170, 172syl6eq 2701 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
174166, 173breqtrrd 4713 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) < ((2 · 𝑁)↑2))
175121, 136, 127, 157, 174lelttrd 10233 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) < ((2 · 𝑁)↑2))
176129nnrpd 11908 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈ ℝ+)
177127, 176ltaddrpd 11943 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) < (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))))
178121, 127, 131, 175, 177lttrd 10236 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) < (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))))
179121, 131, 132, 178ltadd1dd 10676 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) < ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
18033ad2ant1 1102 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 = ((2 · 𝑁) + 1))
181180oveq1d 6705 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃↑2) = (((2 · 𝑁) + 1)↑2))
18297sqvald 13045 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃↑2) = (𝑃 · 𝑃))
183125nncnd 11074 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℂ)
184 binom21 13020 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
185183, 184syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
186181, 182, 1853eqtr3d 2693 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 · 𝑃) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
187179, 186breqtrrd 4713 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃))
188103nnred 11073 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℝ)
18945nngt0d 11102 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < 𝑃)
190 ltdivmul 10936 . . . . . . . . . . 11 (((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃 ↔ (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃)))
191188, 51, 51, 189, 190syl112anc 1370 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃 ↔ (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃)))
192187, 191mpbird 247 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃)
193 1z 11445 . . . . . . . . . 10 1 ∈ ℤ
194 elfzm11 12449 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∧ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃)))
195193, 69, 194sylancr 696 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∧ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃)))
196111, 120, 192, 195mpbir3and 1264 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)))
197 gzreim 15690 . . . . . . . . 9 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + (i · 𝑛)) ∈ ℤ[i])
19881, 58, 197syl2anc 694 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚 + (i · 𝑛)) ∈ ℤ[i])
199 gzcn 15683 . . . . . . . . . . . . 13 ((𝑚 + (i · 𝑛)) ∈ ℤ[i] → (𝑚 + (i · 𝑛)) ∈ ℂ)
200198, 199syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚 + (i · 𝑛)) ∈ ℂ)
201200absvalsq2d 14226 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((abs‘(𝑚 + (i · 𝑛)))↑2) = (((ℜ‘(𝑚 + (i · 𝑛)))↑2) + ((ℑ‘(𝑚 + (i · 𝑛)))↑2)))
202139, 147crred 14015 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (ℜ‘(𝑚 + (i · 𝑛))) = 𝑚)
203202oveq1d 6705 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((ℜ‘(𝑚 + (i · 𝑛)))↑2) = (𝑚↑2))
204139, 147crimd 14016 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (ℑ‘(𝑚 + (i · 𝑛))) = 𝑛)
205204oveq1d 6705 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((ℑ‘(𝑚 + (i · 𝑛)))↑2) = (𝑛↑2))
206203, 205oveq12d 6708 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((ℜ‘(𝑚 + (i · 𝑛)))↑2) + ((ℑ‘(𝑚 + (i · 𝑛)))↑2)) = ((𝑚↑2) + (𝑛↑2)))
207201, 206eqtrd 2685 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((abs‘(𝑚 + (i · 𝑛)))↑2) = ((𝑚↑2) + (𝑛↑2)))
208207oveq1d 6705 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((𝑚↑2) + (𝑛↑2)) + 1))
209103nncnd 11074 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℂ)
210209, 97, 108divcan1d 10840 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃) = (((𝑚↑2) + (𝑛↑2)) + 1))
211208, 210eqtr4d 2688 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃))
212 oveq1 6697 . . . . . . . . . 10 (𝑘 = ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) → (𝑘 · 𝑃) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃))
213212eqeq2d 2661 . . . . . . . . 9 (𝑘 = ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) → ((((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) ↔ (((abs‘𝑢)↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)))
214 fveq2 6229 . . . . . . . . . . . 12 (𝑢 = (𝑚 + (i · 𝑛)) → (abs‘𝑢) = (abs‘(𝑚 + (i · 𝑛))))
215214oveq1d 6705 . . . . . . . . . . 11 (𝑢 = (𝑚 + (i · 𝑛)) → ((abs‘𝑢)↑2) = ((abs‘(𝑚 + (i · 𝑛)))↑2))
216215oveq1d 6705 . . . . . . . . . 10 (𝑢 = (𝑚 + (i · 𝑛)) → (((abs‘𝑢)↑2) + 1) = (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1))
217216eqeq1d 2653 . . . . . . . . 9 (𝑢 = (𝑚 + (i · 𝑛)) → ((((abs‘𝑢)↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃) ↔ (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)))
218213, 217rspc2ev 3355 . . . . . . . 8 ((((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ∧ (𝑚 + (i · 𝑛)) ∈ ℤ[i] ∧ (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
219196, 198, 211, 218syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
2202193expia 1286 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
22142, 220syl5 34 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁))) → ((𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
222221rexlimdvva 3067 . . . 4 (𝜑 → (∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
22341, 222syl5bi 232 . . 3 (𝜑 → (𝑗 ∈ (𝐴 ∩ ran 𝐹) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
224223exlimdv 1901 . 2 (𝜑 → (∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)))
2259, 224mpd 15 1 (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wne 2823  wrex 2942  cin 3606  c0 3948   class class class wbr 4685  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975  ici 9976   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  4c4 11110  0cn0 11330  cz 11415  +crp 11870  ...cfz 12364   mod cmo 12708  cexp 12900  cre 13881  cim 13882  abscabs 14018  cdvds 15027  cprime 15432  ℤ[i]cgz 15680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-gz 15681
This theorem is referenced by:  4sqlem13  15708
  Copyright terms: Public domain W3C validator