MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem10 Structured version   Visualization version   GIF version

Theorem 4sqlem10 15853
Description: Lemma for 4sq 15870. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem10.5 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
Assertion
Ref Expression
4sqlem10 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.2 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
21adantr 472 . . . . . . . . . 10 ((𝜑𝜓) → 𝐴 ∈ ℤ)
3 4sqlem5.3 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
43adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑀 ∈ ℕ)
54nnred 11227 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑀 ∈ ℝ)
65rehalfcld 11471 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝑀 / 2) ∈ ℝ)
76recnd 10260 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑀 / 2) ∈ ℂ)
87negnegd 10575 . . . . . . . . . . 11 ((𝜑𝜓) → --(𝑀 / 2) = (𝑀 / 2))
9 4sqlem5.4 . . . . . . . . . . . . . . . . . . . 20 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
101, 3, 94sqlem5 15848 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1110adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1211simpld 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐵 ∈ ℤ)
1312zred 11674 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝐵 ∈ ℝ)
141, 3, 94sqlem6 15849 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1514adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1615simprd 482 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝐵 < (𝑀 / 2))
1713, 16ltned 10365 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝐵 ≠ (𝑀 / 2))
1817neneqd 2937 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ¬ 𝐵 = (𝑀 / 2))
19 2cnd 11285 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜓) → 2 ∈ ℂ)
2019sqvald 13199 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → (2↑2) = (2 · 2))
2120oveq2d 6829 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2)))
224nncnd 11228 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → 𝑀 ∈ ℂ)
23 2ne0 11305 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
2423a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → 2 ≠ 0)
2522, 19, 24sqdivd 13215 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2)))
2622sqcld 13200 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → (𝑀↑2) ∈ ℂ)
2726, 19, 19, 24, 24divdiv1d 11024 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2)))
2821, 25, 273eqtr4d 2804 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2))
2926halfcld 11469 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → ((𝑀↑2) / 2) ∈ ℂ)
3029halfcld 11469 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) ∈ ℂ)
3112zcnd 11675 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → 𝐵 ∈ ℂ)
3231sqcld 13200 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝐵↑2) ∈ ℂ)
33 4sqlem10.5 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
3430, 32, 33subeq0d 10592 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = (𝐵↑2))
3528, 34eqtr2d 2795 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝐵↑2) = ((𝑀 / 2)↑2))
36 sqeqor 13172 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
3731, 7, 36syl2anc 696 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
3835, 37mpbid 222 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2)))
3938ord 391 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (¬ 𝐵 = (𝑀 / 2) → 𝐵 = -(𝑀 / 2)))
4018, 39mpd 15 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝐵 = -(𝑀 / 2))
4140, 12eqeltrrd 2840 . . . . . . . . . . . 12 ((𝜑𝜓) → -(𝑀 / 2) ∈ ℤ)
4241znegcld 11676 . . . . . . . . . . 11 ((𝜑𝜓) → --(𝑀 / 2) ∈ ℤ)
438, 42eqeltrrd 2840 . . . . . . . . . 10 ((𝜑𝜓) → (𝑀 / 2) ∈ ℤ)
442, 43zaddcld 11678 . . . . . . . . 9 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℤ)
4544zred 11674 . . . . . . . 8 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℝ)
464nnrpd 12063 . . . . . . . 8 ((𝜑𝜓) → 𝑀 ∈ ℝ+)
4745, 46modcld 12868 . . . . . . 7 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ)
4847recnd 10260 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
49 0cnd 10225 . . . . . 6 ((𝜑𝜓) → 0 ∈ ℂ)
50 df-neg 10461 . . . . . . 7 -(𝑀 / 2) = (0 − (𝑀 / 2))
5140, 9, 503eqtr3g 2817 . . . . . 6 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (0 − (𝑀 / 2)))
5248, 49, 7, 51subcan2d 10626 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0)
53 dvdsval3 15186 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
544, 44, 53syl2anc 696 . . . . 5 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
5552, 54mpbird 247 . . . 4 ((𝜑𝜓) → 𝑀 ∥ (𝐴 + (𝑀 / 2)))
564nnzd 11673 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℤ)
57 dvdssq 15482 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
5856, 44, 57syl2anc 696 . . . 4 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
5955, 58mpbid 222 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2))
6022sqvald 13199 . . . 4 ((𝜑𝜓) → (𝑀↑2) = (𝑀 · 𝑀))
614nnne0d 11257 . . . . . 6 ((𝜑𝜓) → 𝑀 ≠ 0)
62 dvdsmulcr 15213 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
6356, 44, 56, 61, 62syl112anc 1481 . . . . 5 ((𝜑𝜓) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
6455, 63mpbird 247 . . . 4 ((𝜑𝜓) → (𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
6560, 64eqbrtrd 4826 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
66 zsqcl 13128 . . . . 5 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
6756, 66syl 17 . . . 4 ((𝜑𝜓) → (𝑀↑2) ∈ ℤ)
68 zsqcl 13128 . . . . 5 ((𝐴 + (𝑀 / 2)) ∈ ℤ → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
6944, 68syl 17 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
7044, 56zmulcld 11680 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · 𝑀) ∈ ℤ)
71 dvds2sub 15218 . . . 4 (((𝑀↑2) ∈ ℤ ∧ ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ ∧ ((𝐴 + (𝑀 / 2)) · 𝑀) ∈ ℤ) → (((𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2) ∧ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀)) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀))))
7267, 69, 70, 71syl3anc 1477 . . 3 ((𝜑𝜓) → (((𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2) ∧ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀)) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀))))
7359, 65, 72mp2and 717 . 2 ((𝜑𝜓) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7444zcnd 11675 . . . . 5 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℂ)
7574sqvald 13199 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) = ((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))))
7675oveq1d 6828 . . 3 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7774, 74, 22subdid 10678 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
78222halvesd 11470 . . . . . . 7 ((𝜑𝜓) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
7978oveq2d 6829 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − 𝑀))
802zcnd 11675 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
8180, 7, 7pnpcan2d 10622 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = (𝐴 − (𝑀 / 2)))
8279, 81eqtr3d 2796 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − 𝑀) = (𝐴 − (𝑀 / 2)))
8382oveq2d 6829 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
84 subsq 13166 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8580, 7, 84syl2anc 696 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8628oveq2d 6829 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8783, 85, 863eqtr2d 2800 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8876, 77, 873eqtr2d 2800 . 2 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8973, 88breqtrd 4830 1 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  (class class class)co 6813  cc 10126  0cc0 10128   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  cz 11569   mod cmo 12862  cexp 13054  cdvds 15182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419
This theorem is referenced by:  4sqlem16  15866
  Copyright terms: Public domain W3C validator