![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p4e8 | Structured version Visualization version GIF version |
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p4e8 | ⊢ (4 + 4) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 11282 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 6803 | . . 3 ⊢ (4 + 4) = (4 + (3 + 1)) |
3 | 4cn 11299 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 3cn 11296 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 10195 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10249 | . . 3 ⊢ ((4 + 3) + 1) = (4 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2795 | . 2 ⊢ (4 + 4) = ((4 + 3) + 1) |
8 | df-8 11286 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 4p3e7 11364 | . . . 4 ⊢ (4 + 3) = 7 | |
10 | 9 | oveq1i 6802 | . . 3 ⊢ ((4 + 3) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2795 | . 2 ⊢ 8 = ((4 + 3) + 1) |
12 | 7, 11 | eqtr4i 2795 | 1 ⊢ (4 + 4) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 (class class class)co 6792 1c1 10138 + caddc 10140 3c3 11272 4c4 11273 7c7 11276 8c8 11277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-addass 10202 ax-i2m1 10205 ax-1ne0 10206 ax-rrecex 10209 ax-cnre 10210 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 |
This theorem is referenced by: 4t2e8 11382 83prm 16036 1259lem2 16045 1259lem3 16046 2503lem2 16051 4001lem2 16055 quart1lem 24802 log2ub 24896 hgt750lem2 31064 |
Copyright terms: Public domain | W3C validator |