![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p2e6 | Structured version Visualization version GIF version |
Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p2e6 | ⊢ (4 + 2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11280 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 6803 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
3 | 4cn 11299 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | ax-1cn 10195 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10249 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2795 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
7 | df-5 11283 | . . . 4 ⊢ 5 = (4 + 1) | |
8 | 7 | oveq1i 6802 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
9 | 6, 8 | eqtr4i 2795 | . 2 ⊢ (4 + 2) = (5 + 1) |
10 | df-6 11284 | . 2 ⊢ 6 = (5 + 1) | |
11 | 9, 10 | eqtr4i 2795 | 1 ⊢ (4 + 2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 (class class class)co 6792 1c1 10138 + caddc 10140 2c2 11271 4c4 11273 5c5 11274 6c6 11275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-addass 10202 ax-i2m1 10205 ax-1ne0 10206 ax-rrecex 10209 ax-cnre 10210 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 |
This theorem is referenced by: 4p3e7 11364 div4p1lem1div2 11488 4t4e16 11833 6gcd4e2 15462 2exp16 16003 163prm 16038 631prm 16040 1259lem4 16047 2503lem2 16051 2503lem3 16052 4001lem1 16054 4001lem2 16055 4001lem4 16057 bposlem9 25237 hgt750lem2 31064 lhe4.4ex1a 39047 fmtno4prmfac 42002 fmtno5faclem1 42009 gbowgt5 42168 mogoldbb 42191 |
Copyright terms: Public domain | W3C validator |