![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version |
Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
4ne0 | ⊢ 4 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 11309 | . 2 ⊢ 4 ∈ ℝ | |
2 | 4pos 11328 | . 2 ⊢ 0 < 4 | |
3 | 1, 2 | gt0ne0ii 10776 | 1 ⊢ 4 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2932 0cc0 10148 4c4 11284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-2 11291 df-3 11292 df-4 11293 |
This theorem is referenced by: 8th4div3 11464 div4p1lem1div2 11499 fldiv4p1lem1div2 12850 fldiv4lem1div2uz2 12851 fldiv4lem1div2 12852 discr 13215 sqoddm1div8 13242 4bc2eq6 13330 bpoly3 15008 bpoly4 15009 flodddiv4 15359 flodddiv4lt 15361 flodddiv4t2lthalf 15362 6lcm4e12 15551 cphipval2 23260 4cphipval2 23261 minveclem3 23420 uniioombl 23577 sincos4thpi 24485 sincos6thpi 24487 heron 24785 quad2 24786 dcubic 24793 mcubic 24794 cubic 24796 dquartlem1 24798 dquartlem2 24799 dquart 24800 quart1cl 24801 quart1lem 24802 quart1 24803 quartlem4 24807 quart 24808 log2tlbnd 24892 bclbnd 25225 bposlem7 25235 bposlem8 25236 bposlem9 25237 gausslemma2dlem0d 25304 gausslemma2dlem3 25313 gausslemma2dlem4 25314 gausslemma2dlem5 25316 m1lgs 25333 2lgslem1a2 25335 2lgslem1 25339 2lgslem2 25340 2lgslem3a 25341 2lgslem3b 25342 2lgslem3c 25343 2lgslem3d 25344 pntibndlem2 25500 4ipval2 27893 ipidsq 27895 dipcl 27897 dipcj 27899 dip0r 27902 dipcn 27905 ip1ilem 28011 ipasslem10 28024 polid2i 28344 lnopeq0i 29196 lnophmlem2 29206 quad3 31892 limclner 40404 stoweid 40801 wallispi2lem1 40809 stirlinglem3 40814 stirlinglem12 40823 stirlinglem13 40824 fouriersw 40969 |
Copyright terms: Public domain | W3C validator |