![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4bc2eq6 | Structured version Visualization version GIF version |
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
4bc2eq6 | ⊢ (4C2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11580 | . . . . 5 ⊢ 0 ∈ ℤ | |
2 | 4z 11603 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 2z 11601 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1424 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0le2 11303 | . . . . 5 ⊢ 0 ≤ 2 | |
6 | 2re 11282 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 11289 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2lt4 11390 | . . . . . 6 ⊢ 2 < 4 | |
9 | 6, 7, 8 | ltleii 10352 | . . . . 5 ⊢ 2 ≤ 4 |
10 | 5, 9 | pm3.2i 470 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
11 | elfz4 12528 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
12 | 4, 10, 11 | mp2an 710 | . . 3 ⊢ 2 ∈ (0...4) |
13 | bcval2 13286 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
15 | 3nn0 11502 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
16 | facp1 13259 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
18 | df-4 11273 | . . . . . 6 ⊢ 4 = (3 + 1) | |
19 | 18 | fveq2i 6355 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
20 | 18 | oveq2i 6824 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
21 | 17, 19, 20 | 3eqtr4i 2792 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
22 | 4cn 11290 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
23 | 2cn 11283 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
24 | 2p2e4 11336 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
25 | 22, 23, 23, 24 | subaddrii 10562 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
26 | 25 | fveq2i 6355 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
27 | fac2 13260 | . . . . . . 7 ⊢ (!‘2) = 2 | |
28 | 26, 27 | eqtri 2782 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
29 | 28, 27 | oveq12i 6825 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
30 | 2t2e4 11369 | . . . . 5 ⊢ (2 · 2) = 4 | |
31 | 29, 30 | eqtri 2782 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
32 | 21, 31 | oveq12i 6825 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
33 | faccl 13264 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
35 | 34 | nncni 11222 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
36 | 4ne0 11309 | . . . . 5 ⊢ 4 ≠ 0 | |
37 | 35, 22, 36 | divcan4i 10964 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
38 | fac3 13261 | . . . 4 ⊢ (!‘3) = 6 | |
39 | 37, 38 | eqtri 2782 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
40 | 32, 39 | eqtri 2782 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
41 | 14, 40 | eqtri 2782 | 1 ⊢ (4C2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 ≤ cle 10267 − cmin 10458 / cdiv 10876 ℕcn 11212 2c2 11262 3c3 11263 4c4 11264 6c6 11266 ℕ0cn0 11484 ℤcz 11569 ...cfz 12519 !cfa 13254 Ccbc 13283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-seq 12996 df-fac 13255 df-bc 13284 |
This theorem is referenced by: bpoly4 14989 ex-bc 27620 |
Copyright terms: Public domain | W3C validator |