Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemcnd Structured version   Visualization version   GIF version

Theorem 4atexlemcnd 35880
Description: Lemma for 4atexlem7 35883. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
4thatlem0.d 𝐷 = ((𝑅 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemcnd (𝜑𝐶𝐷)

Proof of Theorem 4atexlemcnd
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . . 4 = (le‘𝐾)
3 4thatlem0.j . . . 4 = (join‘𝐾)
4 4thatlem0.m . . . 4 = (meet‘𝐾)
5 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 35875 . . 3 (𝜑𝑇 𝑊)
10 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
111, 2, 3, 4, 5, 6, 7, 8, 104atexlemnclw 35878 . . 3 (𝜑 → ¬ 𝐶 𝑊)
12 nbrne2 4806 . . 3 ((𝑇 𝑊 ∧ ¬ 𝐶 𝑊) → 𝑇𝐶)
139, 11, 12syl2anc 573 . 2 (𝜑𝑇𝐶)
1414atexlemk 35855 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
1514atexlemq 35859 . . . . . . . . 9 (𝜑𝑄𝐴)
1614atexlemt 35861 . . . . . . . . 9 (𝜑𝑇𝐴)
173, 5hlatjcom 35176 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
1814, 15, 16, 17syl3anc 1476 . . . . . . . 8 (𝜑 → (𝑄 𝑇) = (𝑇 𝑄))
19 simp221 1398 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
201, 19sylbi 207 . . . . . . . . 9 (𝜑𝑅𝐴)
213, 5hlatjcom 35176 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) = (𝑇 𝑅))
2214, 20, 16, 21syl3anc 1476 . . . . . . . 8 (𝜑 → (𝑅 𝑇) = (𝑇 𝑅))
2318, 22oveq12d 6811 . . . . . . 7 (𝜑 → ((𝑄 𝑇) (𝑅 𝑇)) = ((𝑇 𝑄) (𝑇 𝑅)))
2414atexlemkc 35866 . . . . . . . . 9 (𝜑𝐾 ∈ CvLat)
2514atexlemp 35858 . . . . . . . . 9 (𝜑𝑃𝐴)
2614atexlempnq 35863 . . . . . . . . 9 (𝜑𝑃𝑄)
27 simp223 1400 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
281, 27sylbi 207 . . . . . . . . 9 (𝜑 → (𝑃 𝑅) = (𝑄 𝑅))
295, 3cvlsupr6 35156 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅𝑄)
3029necomd 2998 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑄𝑅)
3124, 25, 15, 20, 26, 28, 30syl132anc 1494 . . . . . . . 8 (𝜑𝑄𝑅)
321, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 35876 . . . . . . . . 9 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
335, 3cvlsupr7 35157 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))
3424, 25, 15, 20, 26, 28, 33syl132anc 1494 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) = (𝑅 𝑄))
353, 5hlatjcom 35176 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
3614, 15, 20, 35syl3anc 1476 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
3734, 36eqtr4d 2808 . . . . . . . . . 10 (𝜑 → (𝑃 𝑄) = (𝑄 𝑅))
3837breq2d 4798 . . . . . . . . 9 (𝜑 → (𝑇 (𝑃 𝑄) ↔ 𝑇 (𝑄 𝑅)))
3932, 38mtbid 313 . . . . . . . 8 (𝜑 → ¬ 𝑇 (𝑄 𝑅))
402, 3, 4, 52llnma2 35597 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑇𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 (𝑄 𝑅))) → ((𝑇 𝑄) (𝑇 𝑅)) = 𝑇)
4114, 15, 20, 16, 31, 39, 40syl132anc 1494 . . . . . . 7 (𝜑 → ((𝑇 𝑄) (𝑇 𝑅)) = 𝑇)
4223, 41eqtr2d 2806 . . . . . 6 (𝜑𝑇 = ((𝑄 𝑇) (𝑅 𝑇)))
4342adantr 466 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝑇 = ((𝑄 𝑇) (𝑅 𝑇)))
4414atexlemkl 35865 . . . . . . . . . 10 (𝜑𝐾 ∈ Lat)
451, 3, 54atexlemqtb 35869 . . . . . . . . . 10 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
461, 3, 54atexlempsb 35868 . . . . . . . . . 10 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
47 eqid 2771 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
4847, 2, 4latmle1 17284 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
4944, 45, 46, 48syl3anc 1476 . . . . . . . . 9 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
5010, 49syl5eqbr 4821 . . . . . . . 8 (𝜑𝐶 (𝑄 𝑇))
5150adantr 466 . . . . . . 7 ((𝜑𝐶 = 𝐷) → 𝐶 (𝑄 𝑇))
52 simpr 471 . . . . . . . 8 ((𝜑𝐶 = 𝐷) → 𝐶 = 𝐷)
53 4thatlem0.d . . . . . . . . . 10 𝐷 = ((𝑅 𝑇) (𝑃 𝑆))
5447, 3, 5hlatjcl 35175 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) ∈ (Base‘𝐾))
5514, 20, 16, 54syl3anc 1476 . . . . . . . . . . 11 (𝜑 → (𝑅 𝑇) ∈ (Base‘𝐾))
5647, 2, 4latmle1 17284 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑅 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑇) (𝑃 𝑆)) (𝑅 𝑇))
5744, 55, 46, 56syl3anc 1476 . . . . . . . . . 10 (𝜑 → ((𝑅 𝑇) (𝑃 𝑆)) (𝑅 𝑇))
5853, 57syl5eqbr 4821 . . . . . . . . 9 (𝜑𝐷 (𝑅 𝑇))
5958adantr 466 . . . . . . . 8 ((𝜑𝐶 = 𝐷) → 𝐷 (𝑅 𝑇))
6052, 59eqbrtrd 4808 . . . . . . 7 ((𝜑𝐶 = 𝐷) → 𝐶 (𝑅 𝑇))
611, 2, 3, 4, 5, 6, 7, 8, 104atexlemc 35877 . . . . . . . . . 10 (𝜑𝐶𝐴)
6247, 5atbase 35098 . . . . . . . . . 10 (𝐶𝐴𝐶 ∈ (Base‘𝐾))
6361, 62syl 17 . . . . . . . . 9 (𝜑𝐶 ∈ (Base‘𝐾))
6447, 2, 4latlem12 17286 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑅 𝑇) ∈ (Base‘𝐾))) → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6544, 63, 45, 55, 64syl13anc 1478 . . . . . . . 8 (𝜑 → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6665adantr 466 . . . . . . 7 ((𝜑𝐶 = 𝐷) → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6751, 60, 66mpbi2and 691 . . . . . 6 ((𝜑𝐶 = 𝐷) → 𝐶 ((𝑄 𝑇) (𝑅 𝑇)))
68 hlatl 35169 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
6914, 68syl 17 . . . . . . . 8 (𝜑𝐾 ∈ AtLat)
7042, 16eqeltrrd 2851 . . . . . . . 8 (𝜑 → ((𝑄 𝑇) (𝑅 𝑇)) ∈ 𝐴)
712, 5atcmp 35120 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐶𝐴 ∧ ((𝑄 𝑇) (𝑅 𝑇)) ∈ 𝐴) → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7269, 61, 70, 71syl3anc 1476 . . . . . . 7 (𝜑 → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7372adantr 466 . . . . . 6 ((𝜑𝐶 = 𝐷) → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7467, 73mpbid 222 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝐶 = ((𝑄 𝑇) (𝑅 𝑇)))
7543, 74eqtr4d 2808 . . . 4 ((𝜑𝐶 = 𝐷) → 𝑇 = 𝐶)
7675ex 397 . . 3 (𝜑 → (𝐶 = 𝐷𝑇 = 𝐶))
7776necon3d 2964 . 2 (𝜑 → (𝑇𝐶𝐶𝐷))
7813, 77mpd 15 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  Latclat 17253  Atomscatm 35072  AtLatcal 35073  CvLatclc 35074  HLchlt 35159  LHypclh 35792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lhyp 35796
This theorem is referenced by:  4atexlemex4  35881
  Copyright terms: Public domain W3C validator