MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkd Structured version   Visualization version   GIF version

Theorem 3wlkd 27350
Description: Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 24-Mar-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
3wlkd.v 𝑉 = (Vtx‘𝐺)
3wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
3wlkd (𝜑𝐹(Walks‘𝐺)𝑃)

Proof of Theorem 3wlkd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 3wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 s4cli 13836 . . . 4 ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V
31, 2eqeltri 2846 . . 3 𝑃 ∈ Word V
43a1i 11 . 2 (𝜑𝑃 ∈ Word V)
5 3wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
6 s3cli 13835 . . . 4 ⟨“𝐽𝐾𝐿”⟩ ∈ Word V
75, 6eqeltri 2846 . . 3 𝐹 ∈ Word V
87a1i 11 . 2 (𝜑𝐹 ∈ Word V)
91, 53wlkdlem1 27339 . . 3 (♯‘𝑃) = ((♯‘𝐹) + 1)
109a1i 11 . 2 (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
11 3wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
12 3wlkd.n . . 3 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
13 3wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
141, 5, 11, 12, 133wlkdlem10 27349 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
151, 5, 11, 123wlkdlem5 27343 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
16 3wlkd.v . . . . 5 𝑉 = (Vtx‘𝐺)
17161vgrex 26103 . . . 4 (𝐴𝑉𝐺 ∈ V)
1817ad2antrr 705 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐺 ∈ V)
1911, 18syl 17 . 2 (𝜑𝐺 ∈ V)
20 3wlkd.i . 2 𝐼 = (iEdg‘𝐺)
211, 5, 113wlkdlem4 27342 . 2 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
224, 8, 10, 14, 15, 19, 16, 20, 21wlkd 26818 1 (𝜑𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  wss 3723  {cpr 4318   class class class wbr 4786  cfv 6031  (class class class)co 6793  1c1 10139   + caddc 10141  chash 13321  Word cword 13487  ⟨“cs3 13796  ⟨“cs4 13797  Vtxcvtx 26095  iEdgciedg 26096  Walkscwlks 26727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-ifp 1050  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-s2 13802  df-s3 13803  df-s4 13804  df-wlks 26730
This theorem is referenced by:  3wlkond  27351  3trld  27352
  Copyright terms: Public domain W3C validator