![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 3737 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 221 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ⊆ wss 3680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-in 3687 df-ss 3694 |
This theorem is referenced by: rncoss 5493 imassrn 5587 rnin 5652 inimass 5659 ssoprab2i 6866 omopthlem2 7856 rankval4 8843 cardf2 8882 r0weon 8948 dcomex 9382 axdc2lem 9383 fpwwe2lem1 9566 canthwe 9586 recmulnq 9899 npex 9921 axresscn 10082 trclublem 13856 bpoly4 14910 2strop1 16111 odlem1 18075 gexlem1 18115 psrbagsn 19618 bwth 21336 2ndcctbss 21381 uniioombllem4 23475 uniioombllem5 23476 eff1olem 24414 birthdaylem1 24798 nvss 27678 lediri 28626 lejdiri 28628 sshhococi 28635 mayetes3i 28818 disjxpin 29629 imadifxp 29642 sxbrsigalem5 30580 eulerpartlemmf 30667 kur14lem6 31421 cvmlift2lem12 31524 bj-rrhatsscchat 33355 mblfinlem4 33681 lclkrs2 37248 areaquad 38221 corclrcl 38418 corcltrcl 38450 relopabVD 39553 |
Copyright terms: Public domain | W3C validator |