![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 3772 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | sylibr 224 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-in 3722 df-ss 3729 |
This theorem is referenced by: rabss2 3826 unss2 3927 sslin 3982 intss 4650 ssopab2 5151 xpss12 5281 coss1 5433 coss2 5434 cnvss 5450 rnss 5509 ssres 5582 ssres2 5583 imass1 5658 imass2 5659 predpredss 5847 ssoprab2 6876 ressuppss 7482 tposss 7522 onovuni 7608 ss2ixp 8087 fodomfi 8404 coss12d 13912 isumsplit 14771 isumrpcl 14774 cvgrat 14814 gsumzf1o 18513 gsumzmhm 18537 gsumzinv 18545 dsmmsubg 20289 qustgpopn 22124 metnrmlem2 22864 ovolsslem 23452 uniioombllem3 23553 ulmres 24341 xrlimcnp 24894 pntlemq 25489 cusgredg 26530 sspba 27891 shlej2i 28547 chpssati 29531 mptssALT 29783 bnj1408 31411 subfacp1lem6 31474 mthmpps 31786 qsss1 34377 cossss 34503 aomclem4 38129 cotrclrcl 38536 fldc 42593 fldcALTV 42611 |
Copyright terms: Public domain | W3C validator |