![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 3sstr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | sseq12d 3783 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷)) |
5 | 1, 4 | mpbid 222 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ⊆ wss 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-in 3730 df-ss 3737 |
This theorem is referenced by: cnvtsr 17430 dprdss 18636 dprd2da 18649 dmdprdsplit2lem 18652 mplind 19717 txcmplem1 21665 setsmstopn 22503 tngtopn 22674 bcthlem2 23341 bcthlem4 23343 uniiccvol 23568 dyadmaxlem 23585 dvlip2 23978 dvne0 23994 shlej2 28560 hauseqcn 30281 bnd2lem 33922 heiborlem8 33949 dochord 37180 lclkrlem2p 37332 mapdsn 37451 hbtlem5 38224 fvmptiunrelexplb0d 38502 fvmptiunrelexplb1d 38504 |
Copyright terms: Public domain | W3C validator |