![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1123 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 3adant2OLD 1150 3adantl2 1153 3adantr2 1156 3imp3i2an 1401 fpropnf1 6639 cfcof 9209 axcclem 9392 enqeq 9869 ltleletr 10243 ixxssixx 12303 prodmolem2 14785 prodmo 14786 zprod 14787 muldvds1 15129 dvds2add 15138 dvds2sub 15139 dvdstr 15141 initoeu2lem2 16787 pospropd 17256 csrgbinom 18667 smadiadetglem2 20601 ismbf3d 23541 mbfi1flimlem 23609 colinearalg 25910 frusgrnn0 26598 wlkwwlkinj 26926 2wlkond 26978 2pthond 26983 2pthon3v 26984 umgr2adedgwlkonALT 26988 vdgn1frgrv2 27371 frgr2wwlkeqm 27406 bnj967 31243 bnj1110 31278 cgr3permute3 32381 cgr3com 32387 brofs2 32411 areacirclem4 33735 paddasslem14 35539 lhpexle1 35714 cdlemk19w 36679 ismrc 37683 iocinico 38216 gneispb 38848 fourierdlem113 40856 sigaras 41467 sigarms 41468 leltletr 41735 lincresunit3lem3 42690 lincresunit3 42697 |
Copyright terms: Public domain | W3C validator |