Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3rexfrabdioph Structured version   Visualization version   GIF version

Theorem 3rexfrabdioph 37880
Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
Assertion
Ref Expression
3rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝑥,𝐾   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem 3rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sbc2rex 37870 . . . . . 6 ([(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
21sbcbii 3641 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
3 sbc2rex 37870 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
42, 3bitri 264 . . . 4 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
54rabbii 3334 . . 3 {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑}
6 rexfrabdioph.1 . . . . . . 7 𝑀 = (𝑁 + 1)
7 nn0p1nn 11533 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
86, 7syl5eqel 2853 . . . . . 6 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
98nnnn0d 11552 . . . . 5 (𝑁 ∈ ℕ0𝑀 ∈ ℕ0)
109adantr 466 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → 𝑀 ∈ ℕ0)
11 sbcrot3 37874 . . . . . . . . . . 11 ([(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑)
1211sbcbii 3641 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑)
13 sbcrot3 37874 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
1412, 13bitri 264 . . . . . . . . 9 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
1514sbcbii 3641 . . . . . . . 8 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
16 reseq1 5528 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)))
1716sbccomieg 37876 . . . . . . . . 9 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
18 fzssp1 12590 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...(𝑁 + 1))
196oveq2i 6803 . . . . . . . . . . . 12 (1...𝑀) = (1...(𝑁 + 1))
2018, 19sseqtr4i 3785 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝑀)
21 resabs1 5568 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝑀) → ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
22 dfsbcq 3587 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
2320, 21, 22mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
24 vex 3352 . . . . . . . . . . . . . 14 𝑡 ∈ V
2524resex 5584 . . . . . . . . . . . . 13 (𝑡 ↾ (1...𝑀)) ∈ V
26 fveq1 6331 . . . . . . . . . . . . . 14 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝑀))‘𝑀))
2726sbcco3g 4141 . . . . . . . . . . . . 13 ((𝑡 ↾ (1...𝑀)) ∈ V → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
2825, 27ax-mp 5 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
29 elfz1end 12577 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
308, 29sylib 208 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
31 fvres 6348 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝑀) → ((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀))
32 dfsbcq 3587 . . . . . . . . . . . . 13 (((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3330, 31, 323syl 18 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3428, 33syl5bb 272 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3534sbcbidv 3640 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3623, 35syl5bb 272 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3717, 36syl5bb 272 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3815, 37syl5bbr 274 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3938rabbidv 3338 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} = {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑})
4039eleq1d 2834 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾) ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)))
4140biimpar 463 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾))
42 rexfrabdioph.2 . . . . 5 𝐿 = (𝑀 + 1)
43 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
4442, 432rexfrabdioph 37879 . . . 4 ((𝑀 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
4510, 41, 44syl2anc 565 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
465, 45syl5eqel 2853 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀))
476rexfrabdioph 37878 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
4846, 47syldan 571 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wrex 3061  {crab 3064  Vcvv 3349  [wsbc 3585  wss 3721  cres 5251  cfv 6031  (class class class)co 6792  𝑚 cmap 8008  1c1 10138   + caddc 10140  cn 11221  0cn0 11493  ...cfz 12532  Diophcdioph 37837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-hash 13321  df-mzpcl 37805  df-mzp 37806  df-dioph 37838
This theorem is referenced by:  expdiophlem2  38108
  Copyright terms: Public domain W3C validator