Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3rexfrabdioph Structured version   Visualization version   GIF version

Theorem 3rexfrabdioph 36880
Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
Assertion
Ref Expression
3rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝑥,𝐾   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem 3rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sbc2rex 36870 . . . . . . 7 ([(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
21sbcbii 3478 . . . . . 6 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
3 sbc2rex 36870 . . . . . 6 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
42, 3bitri 264 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
54a1i 11 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...𝑀)) → ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑))
65rabbiia 3177 . . 3 {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑}
7 rexfrabdioph.1 . . . . . . 7 𝑀 = (𝑁 + 1)
8 nn0p1nn 11292 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
97, 8syl5eqel 2702 . . . . . 6 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
109nnnn0d 11311 . . . . 5 (𝑁 ∈ ℕ0𝑀 ∈ ℕ0)
1110adantr 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → 𝑀 ∈ ℕ0)
12 sbcrot3 36874 . . . . . . . . . . 11 ([(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑)
1312sbcbii 3478 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑)
14 sbcrot3 36874 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
1513, 14bitri 264 . . . . . . . . 9 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
1615sbcbii 3478 . . . . . . . 8 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
17 reseq1 5360 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)))
1817sbccomieg 36876 . . . . . . . . 9 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
19 fzssp1 12342 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...(𝑁 + 1))
207oveq2i 6626 . . . . . . . . . . . 12 (1...𝑀) = (1...(𝑁 + 1))
2119, 20sseqtr4i 3623 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝑀)
22 resabs1 5396 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝑀) → ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
23 dfsbcq 3424 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
2421, 22, 23mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
25 vex 3193 . . . . . . . . . . . . . 14 𝑡 ∈ V
2625resex 5412 . . . . . . . . . . . . 13 (𝑡 ↾ (1...𝑀)) ∈ V
27 fveq1 6157 . . . . . . . . . . . . . 14 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝑀))‘𝑀))
2827sbcco3g 3977 . . . . . . . . . . . . 13 ((𝑡 ↾ (1...𝑀)) ∈ V → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
2926, 28ax-mp 5 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
30 elfz1end 12329 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
319, 30sylib 208 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
32 fvres 6174 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝑀) → ((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀))
33 dfsbcq 3424 . . . . . . . . . . . . 13 (((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3431, 32, 333syl 18 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3529, 34syl5bb 272 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3635sbcbidv 3477 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3724, 36syl5bb 272 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3818, 37syl5bb 272 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3916, 38syl5bbr 274 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
4039rabbidv 3181 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} = {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑})
4140eleq1d 2683 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾) ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)))
4241biimpar 502 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾))
43 rexfrabdioph.2 . . . . 5 𝐿 = (𝑀 + 1)
44 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
4543, 442rexfrabdioph 36879 . . . 4 ((𝑀 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
4611, 42, 45syl2anc 692 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
476, 46syl5eqel 2702 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀))
487rexfrabdioph 36878 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
4947, 48syldan 487 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2909  {crab 2912  Vcvv 3190  [wsbc 3422  wss 3560  cres 5086  cfv 5857  (class class class)co 6615  𝑚 cmap 7817  1c1 9897   + caddc 9899  cn 10980  0cn0 11252  ...cfz 12284  Diophcdioph 36837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-hash 13074  df-mzpcl 36805  df-mzp 36806  df-dioph 36838
This theorem is referenced by:  expdiophlem2  37108
  Copyright terms: Public domain W3C validator