MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3optocl Structured version   Visualization version   GIF version

Theorem 3optocl 5354
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
Hypotheses
Ref Expression
3optocl.1 𝑅 = (𝐷 × 𝐹)
3optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
3optocl.3 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
3optocl.4 (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))
3optocl.5 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)
Assertion
Ref Expression
3optocl ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑣,𝐶,𝑢   𝑥,𝐷,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐹,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝑅,𝑤,𝑣,𝑢   𝜓,𝑥,𝑦   𝜒,𝑧,𝑤   𝜃,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜓(𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑣,𝑢)   𝜃(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)

Proof of Theorem 3optocl
StepHypRef Expression
1 3optocl.1 . . . 4 𝑅 = (𝐷 × 𝐹)
2 3optocl.4 . . . . 5 (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))
32imbi2d 329 . . . 4 (⟨𝑣, 𝑢⟩ = 𝐶 → (((𝐴𝑅𝐵𝑅) → 𝜒) ↔ ((𝐴𝑅𝐵𝑅) → 𝜃)))
4 3optocl.2 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
54imbi2d 329 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (((𝑣𝐷𝑢𝐹) → 𝜑) ↔ ((𝑣𝐷𝑢𝐹) → 𝜓)))
6 3optocl.3 . . . . . . 7 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
76imbi2d 329 . . . . . 6 (⟨𝑧, 𝑤⟩ = 𝐵 → (((𝑣𝐷𝑢𝐹) → 𝜓) ↔ ((𝑣𝐷𝑢𝐹) → 𝜒)))
8 3optocl.5 . . . . . . 7 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)
983expia 1115 . . . . . 6 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹)) → ((𝑣𝐷𝑢𝐹) → 𝜑))
101, 5, 7, 92optocl 5353 . . . . 5 ((𝐴𝑅𝐵𝑅) → ((𝑣𝐷𝑢𝐹) → 𝜒))
1110com12 32 . . . 4 ((𝑣𝐷𝑢𝐹) → ((𝐴𝑅𝐵𝑅) → 𝜒))
121, 3, 11optocl 5352 . . 3 (𝐶𝑅 → ((𝐴𝑅𝐵𝑅) → 𝜃))
1312impcom 445 . 2 (((𝐴𝑅𝐵𝑅) ∧ 𝐶𝑅) → 𝜃)
14133impa 1101 1 ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  cop 4327   × cxp 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865  df-xp 5272
This theorem is referenced by:  ecopovtrn  8019
  Copyright terms: Public domain W3C validator