HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem3 Structured version   Visualization version   GIF version

Theorem 3oalem3 28853
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem3 ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ⊆ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))

Proof of Theorem 3oalem3
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3oalem1.1 . . . . . . 7 𝐵C
2 3oalem1.3 . . . . . . 7 𝑅C
31, 2chseli 28648 . . . . . 6 (𝑣 ∈ (𝐵 + 𝑅) ↔ ∃𝑥𝐵𝑦𝑅 𝑣 = (𝑥 + 𝑦))
4 r2ex 3199 . . . . . 6 (∃𝑥𝐵𝑦𝑅 𝑣 = (𝑥 + 𝑦) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)))
53, 4bitri 264 . . . . 5 (𝑣 ∈ (𝐵 + 𝑅) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)))
6 3oalem1.2 . . . . . . 7 𝐶C
7 3oalem1.4 . . . . . . 7 𝑆C
86, 7chseli 28648 . . . . . 6 (𝑣 ∈ (𝐶 + 𝑆) ↔ ∃𝑧𝐶𝑤𝑆 𝑣 = (𝑧 + 𝑤))
9 r2ex 3199 . . . . . 6 (∃𝑧𝐶𝑤𝑆 𝑣 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)))
108, 9bitri 264 . . . . 5 (𝑣 ∈ (𝐶 + 𝑆) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)))
115, 10anbi12i 735 . . . 4 ((𝑣 ∈ (𝐵 + 𝑅) ∧ 𝑣 ∈ (𝐶 + 𝑆)) ↔ (∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
12 elin 3939 . . . 4 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ↔ (𝑣 ∈ (𝐵 + 𝑅) ∧ 𝑣 ∈ (𝐶 + 𝑆)))
13 ee4anv 2329 . . . 4 (∃𝑥𝑦𝑧𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) ↔ (∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
1411, 12, 133bitr4i 292 . . 3 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ↔ ∃𝑥𝑦𝑧𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
151, 6, 2, 73oalem2 28852 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1615exlimivv 2009 . . . 4 (∃𝑧𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1716exlimivv 2009 . . 3 (∃𝑥𝑦𝑧𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1814, 17sylbi 207 . 2 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1918ssriv 3748 1 ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ⊆ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wex 1853  wcel 2139  wrex 3051  cin 3714  wss 3715  (class class class)co 6814   + cva 28107   C cch 28116   + cph 28118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-hilex 28186  ax-hfvadd 28187  ax-hvcom 28188  ax-hvass 28189  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvdistr1 28195  ax-hvdistr2 28196  ax-hvmul0 28197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291  df-sub 10480  df-neg 10481  df-nn 11233  df-grpo 27677  df-ablo 27729  df-hvsub 28158  df-hlim 28159  df-sh 28394  df-ch 28408  df-shs 28497
This theorem is referenced by:  3oai  28857
  Copyright terms: Public domain W3C validator