HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem2 Structured version   Visualization version   GIF version

Theorem 3oalem2 28650
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem2
StepHypRef Expression
1 simplll 813 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑥𝐵)
2 simpllr 815 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦𝑅)
3 3oalem1.1 . . . . . . 7 𝐵C
4 3oalem1.2 . . . . . . 7 𝐶C
5 3oalem1.3 . . . . . . 7 𝑅C
6 3oalem1.4 . . . . . . 7 𝑆C
73, 4, 5, 63oalem1 28649 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
8 hvaddsub12 28023 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
983anidm23 1425 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
10 hvsubid 28011 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑤 𝑤) = 0)
1110oveq2d 6706 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝑦 + (𝑤 𝑤)) = (𝑦 + 0))
12 ax-hvaddid 27989 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
1311, 12sylan9eqr 2707 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = 𝑦)
149, 13eqtr3d 2687 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1514ad2ant2l 797 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1615adantlr 751 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
177, 16syl 17 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) = 𝑦)
18 simprlr 820 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑤𝑆)
19 eqtr2 2671 . . . . . . . . . . 11 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
2019oveq1d 6705 . . . . . . . . . 10 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
2120ad2ant2l 797 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
22 simpl 472 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
2322anim1i 591 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
24 hvsub4 28022 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
2523, 24syldan 486 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
26 hvsubid 28011 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑥 𝑥) = 0)
2726ad2antrr 762 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 𝑥) = 0)
2827oveq1d 6705 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 𝑥) + (𝑦 𝑤)) = (0 + (𝑦 𝑤)))
29 hvsubcl 28002 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 𝑤) ∈ ℋ)
30 hvaddid2 28008 . . . . . . . . . . . . . 14 ((𝑦 𝑤) ∈ ℋ → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3129, 30syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3231adantll 750 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3325, 28, 323eqtrd 2689 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
3433ad2ant2rl 800 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
357, 34syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
36 simpr 476 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
37 simpr 476 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
3837anim2i 592 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 hvsub4 28022 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4036, 38, 39syl2anc 694 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4110ad2antll 765 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 𝑤) = 0)
4241oveq2d 6706 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + (𝑤 𝑤)) = ((𝑧 𝑥) + 0))
43 hvsubcl 28002 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑧 𝑥) ∈ ℋ)
44 ax-hvaddid 27989 . . . . . . . . . . . . . . . 16 ((𝑧 𝑥) ∈ ℋ → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4543, 44syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4645ancoms 468 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4746adantrr 753 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4840, 42, 473eqtrd 2689 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
4948adantlr 751 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5049adantlr 751 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
517, 50syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5221, 35, 513eqtr3d 2693 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) = (𝑧 𝑥))
53 simpll 805 . . . . . . . . 9 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥𝐵)
54 simpll 805 . . . . . . . . 9 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑧𝐶)
554chshii 28212 . . . . . . . . . . . 12 𝐶S
563chshii 28212 . . . . . . . . . . . 12 𝐵S
5755, 56shsvsi 28354 . . . . . . . . . . 11 ((𝑧𝐶𝑥𝐵) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5857ancoms 468 . . . . . . . . . 10 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5956, 55shscomi 28350 . . . . . . . . . 10 (𝐵 + 𝐶) = (𝐶 + 𝐵)
6058, 59syl6eleqr 2741 . . . . . . . . 9 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6153, 54, 60syl2an 493 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6252, 61eqeltrd 2730 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝐵 + 𝐶))
63 simplr 807 . . . . . . . 8 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑦𝑅)
64 simplr 807 . . . . . . . 8 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑤𝑆)
655chshii 28212 . . . . . . . . 9 𝑅S
666chshii 28212 . . . . . . . . 9 𝑆S
6765, 66shsvsi 28354 . . . . . . . 8 ((𝑦𝑅𝑤𝑆) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6863, 64, 67syl2an 493 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6962, 68elind 3831 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))
7056, 55shscli 28304 . . . . . . . 8 (𝐵 + 𝐶) ∈ S
7165, 66shscli 28304 . . . . . . . 8 (𝑅 + 𝑆) ∈ S
7270, 71shincli 28349 . . . . . . 7 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ∈ S
7366, 72shsvai 28351 . . . . . 6 ((𝑤𝑆 ∧ (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7418, 69, 73syl2anc 694 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7517, 74eqeltrrd 2731 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
762, 75elind 3831 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
7766, 72shscli 28304 . . . . 5 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ∈ S
7865, 77shincli 28349 . . . 4 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ∈ S
7956, 78shsvai 28351 . . 3 ((𝑥𝐵𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
801, 76, 79syl2anc 694 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
81 eleq1 2718 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8281ad2antlr 763 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8380, 82mpbird 247 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cin 3606  (class class class)co 6690  chil 27904   + cva 27905  0c0v 27909   cmv 27910   C cch 27914   + cph 27916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-neg 10307  df-nn 11059  df-grpo 27475  df-ablo 27527  df-hvsub 27956  df-hlim 27957  df-sh 28192  df-ch 28206  df-shs 28295
This theorem is referenced by:  3oalem3  28651
  Copyright terms: Public domain W3C validator