![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3nn0 | Structured version Visualization version GIF version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 | ⊢ 3 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 11399 | . 2 ⊢ 3 ∈ ℕ | |
2 | 1 | nnnn0i 11513 | 1 ⊢ 3 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2140 3c3 11284 ℕ0cn0 11505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-1cn 10207 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 |
This theorem is referenced by: 7p4e11 11818 7p4e11OLD 11819 7p7e14 11822 8p4e12 11827 8p6e14 11829 9p4e13 11835 9p5e14 11836 4t4e16 11846 5t4e20 11850 5t4e20OLD 11851 6t4e24 11856 6t6e36 11859 6t6e36OLD 11860 7t4e28 11863 7t6e42 11865 8t4e32 11869 8t5e40 11870 8t5e40OLD 11871 9t4e36 11878 9t5e45 11879 9t7e63 11881 9t8e72 11882 fz0to3un2pr 12656 4fvwrd4 12674 fldiv4p1lem1div2 12851 expnass 13185 binom3 13200 fac4 13283 4bc2eq6 13331 hash3tr 13485 bpoly3 15009 bpoly4 15010 fsumcube 15011 ef4p 15063 efi4p 15087 resin4p 15088 recos4p 15089 ef01bndlem 15134 sin01bnd 15135 sin01gt0 15140 2exp6 16018 2exp8 16019 2exp16 16020 3exp3 16021 7prm 16040 11prm 16045 13prm 16046 17prm 16047 23prm 16049 prmlem2 16050 37prm 16051 43prm 16052 83prm 16053 139prm 16054 163prm 16055 317prm 16056 631prm 16057 1259lem1 16061 1259lem2 16062 1259lem3 16063 1259lem4 16064 1259lem5 16065 1259prm 16066 2503lem1 16067 2503lem2 16068 2503lem3 16069 2503prm 16070 4001lem1 16071 4001lem2 16072 4001lem3 16073 4001lem4 16074 4001prm 16075 cnfldfun 19981 ressunif 22288 tuslem 22293 tangtx 24478 1cubrlem 24789 dcubic1lem 24791 dcubic2 24792 dcubic1 24793 dcubic 24794 mcubic 24795 cubic2 24796 cubic 24797 binom4 24798 dquartlem2 24800 quart1cl 24802 quart1lem 24803 quart1 24804 quartlem1 24805 quartlem2 24806 quart 24809 log2ublem1 24894 log2ublem3 24896 log2ub 24897 log2le1 24898 birthday 24902 ppiublem2 25149 bclbnd 25226 bpos1 25229 bposlem8 25237 gausslemma2dlem4 25315 2lgslem3b 25343 2lgslem3d 25345 pntlemd 25504 pntlema 25506 pntlemb 25507 pntlemf 25515 pntlemo 25517 pntlem3 25519 tgcgr4 25647 iscgra 25922 isinag 25950 isleag 25954 iseqlg 25968 usgrexmplef 26372 upgr3v3e3cycl 27354 upgr4cycl4dv4e 27359 konigsbergiedgw 27422 konigsberglem1 27426 konigsberglem2 27427 konigsberglem3 27428 konigsberglem4 27429 ex-prmo 27649 threehalves 29954 circlemethhgt 31052 hgt750lemd 31057 hgt750lem 31060 hgt750lem2 31061 hgt750lemb 31065 hgt750lema 31066 hgt750leme 31067 tgoldbachgtde 31069 tgoldbachgtda 31070 tgoldbachgt 31072 kur14lem8 31524 jm2.23 38084 jm2.20nn 38085 rmydioph 38102 rmxdioph 38104 expdiophlem2 38110 expdioph 38111 amgm3d 39023 lhe4.4ex1a 39049 fmtno3 41992 fmtno4 41993 fmtno5lem1 41994 fmtno5lem2 41995 fmtno5lem3 41996 fmtno5lem4 41997 fmtno5 41998 257prm 42002 fmtnoprmfac2lem1 42007 fmtno4prmfac 42013 fmtno4prmfac193 42014 fmtno4nprmfac193 42015 fmtno5faclem2 42021 2exp5 42036 139prmALT 42040 31prm 42041 m5prm 42042 127prm 42044 2exp11 42046 m11nprm 42047 mod42tp1mod8 42048 tgoldbachlt 42233 tgoldbach 42234 tgoldbachltOLD 42239 tgoldbachOLD 42241 zlmodzxzldeplem1 42818 |
Copyright terms: Public domain | W3C validator |