![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ne0 | Structured version Visualization version GIF version |
Description: The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
3ne0 | ⊢ 3 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11207 | . 2 ⊢ 3 ∈ ℝ | |
2 | 3pos 11227 | . 2 ⊢ 0 < 3 | |
3 | 1, 2 | gt0ne0ii 10677 | 1 ⊢ 3 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2896 0cc0 10049 3c3 11184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-po 5139 df-so 5140 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-2 11192 df-3 11193 |
This theorem is referenced by: 8th4div3 11365 halfpm6th 11366 halfthird 11798 f1oun2prg 13783 sqrlem7 14109 caurcvgr 14524 bpoly2 14908 bpoly3 14909 bpoly4 14910 sin01bnd 15035 cos01bnd 15036 cos1bnd 15037 cos2bnd 15038 sin01gt0 15040 cos01gt0 15041 rpnnen2lem3 15065 rpnnen2lem11 15073 tangtx 24377 sincos6thpi 24387 sincos3rdpi 24388 pige3 24389 1cubr 24689 dcubic1lem 24690 dcubic2 24691 dcubic1 24692 dcubic 24693 mcubic 24694 cubic2 24695 cubic 24696 quartlem3 24706 log2cnv 24791 log2tlbnd 24792 ppiub 25049 bclbnd 25125 bposlem6 25134 bposlem9 25137 usgrexmplef 26271 upgr4cycl4dv4e 27258 konigsbergiedgw 27321 konigsberglem1 27325 konigsberglem3 27327 konigsberglem5 27329 ex-lcm 27547 hgt750lem 30959 sinccvglem 31794 pigt3 33634 mblfinlem3 33680 itg2addnclem2 33694 itg2addnclem3 33695 lhe4.4ex1a 38947 stoweidlem11 40648 stoweidlem13 40650 stoweidlem26 40663 stoweidlem34 40671 stoweidlem42 40679 stoweidlem59 40696 stoweidlem62 40699 stoweid 40700 wallispilem4 40705 wallispi2lem1 40708 stirlinglem11 40721 fourierdlem87 40830 |
Copyright terms: Public domain | W3C validator |