![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix2 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix2 | ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1367 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
2 | 3orrot 1077 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylibr 224 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 df-3or 1073 |
This theorem is referenced by: 3mix2i 1371 3mix2d 1374 3jaob 1503 tppreqb 4444 tpres 6582 onzsl 7163 sornom 9212 nn0le2is012 11554 hash1to3 13386 cshwshashlem1 15925 zabsle1 25141 ostth 25448 nolesgn2o 32051 sltsolem1 32053 nosep1o 32059 nodenselem8 32068 fnwe2lem3 38041 dfxlim2v 40493 |
Copyright terms: Public domain | W3C validator |