Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1 Structured version   Visualization version   GIF version

Theorem 3mix1 1415
 Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix1 (𝜑 → (𝜑𝜓𝜒))

Proof of Theorem 3mix1
StepHypRef Expression
1 orc 399 . 2 (𝜑 → (𝜑 ∨ (𝜓𝜒)))
2 3orass 1075 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
31, 2sylibr 224 1 (𝜑 → (𝜑𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∨ w3o 1071 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-or 384  df-3or 1073 This theorem is referenced by:  3mix2  1416  3mix3  1417  3mix1i  1418  3mix1d  1421  3jaob  1539  tppreqb  4481  onzsl  7212  sornom  9311  fpwwe2lem13  9676  nn0le2is012  11653  hashv01gt1  13347  hash1to3  13485  cshwshashlem1  16024  zabsle1  25241  colinearalg  26010  frgrregorufr0  27499  sltsolem1  32153  nosep1o  32159  frege129d  38575
 Copyright terms: Public domain W3C validator