![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix1 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix1 | ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 399 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
2 | 3orass 1075 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | sylibr 224 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∨ w3o 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 df-3or 1073 |
This theorem is referenced by: 3mix2 1416 3mix3 1417 3mix1i 1418 3mix1d 1421 3jaob 1539 tppreqb 4481 onzsl 7212 sornom 9311 fpwwe2lem13 9676 nn0le2is012 11653 hashv01gt1 13347 hash1to3 13485 cshwshashlem1 16024 zabsle1 25241 colinearalg 26010 frgrregorufr0 27499 sltsolem1 32153 nosep1o 32159 frege129d 38575 |
Copyright terms: Public domain | W3C validator |