![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3lt4 | Structured version Visualization version GIF version |
Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
3lt4 | ⊢ 3 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11286 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1 | ltp1i 11119 | . 2 ⊢ 3 < (3 + 1) |
3 | df-4 11273 | . 2 ⊢ 4 = (3 + 1) | |
4 | 2, 3 | breqtrri 4831 | 1 ⊢ 3 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4804 (class class class)co 6813 1c1 10129 + caddc 10131 < clt 10266 3c3 11263 4c4 11264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-2 11271 df-3 11272 df-4 11273 |
This theorem is referenced by: 2lt4 11390 3lt5 11393 3lt6 11398 3lt7 11404 3lt8 11411 3lt9 11419 3lt10OLD 11428 3halfnz 11648 3lt10 11871 fz0to4untppr 12636 fldiv4p1lem1div2 12830 bpoly4 14989 ef01bndlem 15113 sin01bnd 15114 flodddiv4 15339 srngfn 16210 cnfldfun 19960 dveflem 23941 tangtx 24456 ppiublem1 25126 bpos1 25207 bposlem2 25209 gausslemma2dlem4 25293 2lgslem3b 25321 2lgslem3d 25323 chebbnd1lem2 25358 chebbnd1lem3 25359 chebbnd1 25360 pntlemb 25485 usgrexmplef 26350 upgr4cycl4dv4e 27337 ex-fl 27615 hlhilsmul 37735 stoweidlem26 40746 stoweid 40783 mod42tp1mod8 42029 nnsum4primes4 42187 nnsum4primesprm 42189 nnsum4primesgbe 42191 nnsum4primesle9 42193 nnsum4primeseven 42198 nnsum4primesevenALTV 42199 wtgoldbnnsum4prm 42200 |
Copyright terms: Public domain | W3C validator |