![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr4i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 207 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 224 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: hbxfrbi 1792 nfntOLDOLD 1823 sbimi 1943 ralimi2 2978 reximi2 3039 r19.28v 3100 r19.29r 3102 r19.30 3111 elex 3243 rmoan 3439 rmoimi2 3442 sseq2 3660 rabss2 3718 n0rex 3968 undif4 4068 r19.2zb 4094 ralf0OLD 4112 difprsnss 4361 snsspw 4407 uniin 4489 iuniin 4563 iuneq1 4566 iuneq2 4569 iunpwss 4650 eunex 4889 rmorabex 4958 exss 4961 pwunss 5048 soeq2 5084 elopaelxp 5225 reliin 5273 coeq1 5312 coeq2 5313 cnveq 5328 dmeq 5356 dmin 5364 dmcoss 5417 rncoeq 5421 dminss 5582 imainss 5583 dfco2a 5673 iotaex 5906 fundif 5973 fununi 6002 fof 6153 f1ocnv 6187 foco2 6419 isocnv 6620 isotr 6626 oprabid 6717 resiexg 7144 zfrep6 7176 ovmptss 7303 dmtpos 7409 tposfn 7426 smores 7494 omopthlem1 7780 eqer 7822 ixpeq2 7964 enssdom 8022 fiprc 8080 sbthlem9 8119 infensuc 8179 fipwuni 8373 dfom3 8582 r1elss 8707 scott0 8787 fin56 9253 dominf 9305 ac6n 9345 brdom4 9390 dominfac 9433 inawina 9550 eltsk2g 9611 ltsosr 9953 ssxr 10145 recgt0ii 10967 sup2 11017 dfnn2 11071 peano2uz2 11503 eluzp1p1 11751 peano2uz 11779 zq 11832 ubmelfzo 12572 elfzlmr 12622 expclzlem 12924 wrdeq 13359 wwlktovf 13745 fsum2dlem 14545 fprod2dlem 14754 sin02gt0 14966 divalglem6 15168 qredeu 15419 isfunc 16571 xpcbas 16865 drsdirfi 16985 clatl 17163 tsrss 17270 gimcnv 17756 gsum2dlem1 18415 gsum2dlem2 18416 lmimcnv 19115 xrge0subm 19835 fctop 20856 cctop 20858 alexsubALTlem4 21901 lpbl 22355 xrge0gsumle 22683 xrge0tsms 22684 iirev 22775 iihalf1 22777 iihalf2 22779 iimulcl 22783 vitalilem1 23422 ply1idom 23929 aacjcl 24127 aannenlem2 24129 ang180lem4 24587 lgslem3 25069 axlowdim 25886 axcontlem2 25890 usgrexmplef 26196 cusgrop 26390 rusgrpropedg 26536 spthispth 26678 cycliscrct 26750 wwlksn0 26817 clwwlkn 26985 clwwlkccat 27332 clwwlknonccat 27334 numclwwlk1 27351 nmobndseqi 27762 axhcompl-zf 27983 hhcmpl 28185 shunssi 28355 spansni 28544 pjoml3i 28573 cmcmlem 28578 nonbooli 28638 lnopco0i 28991 pjnmopi 29135 pjnormssi 29155 hatomistici 29349 cvexchi 29356 cmdmdi 29404 mddmdin0i 29418 cdj3lem3b 29427 disjin 29525 disjin2 29526 xrge0tsmsd 29913 issgon 30314 sxbrsigalem0 30461 eulerpartlemgs2 30570 ballotlem2 30678 ballotth 30727 bnj945 30970 bnj556 31096 bnj557 31097 bnj607 31112 bnj864 31118 bnj969 31142 bnj999 31153 bnj1398 31228 elpotr 31810 dfon2lem8 31819 sltval2 31934 txpss3v 32110 meran1 32535 arg-ax 32540 bj-nfalt 32827 bj-eunex 32924 poimirlem25 33564 poimirlem30 33569 bndss 33715 fldcrng 33933 flddmn 33987 xrnss3v 34274 prter1 34483 mzpclall 37607 setindtrs 37909 dgraalem 38032 ifpimim 38171 inintabss 38201 refimssco 38230 cotrintab 38238 intimass 38263 psshepw 38399 nzin 38834 axc11next 38924 iotaexeu 38936 hbexgVD 39456 reuan 41501 aovpcov0 41591 aov0ov0 41594 enege 41883 onego 41884 gbogbow 41969 spr0el 42057 sprsymrelf 42070 mhmismgmhm 42131 sgrpplusgaopALT 42156 rhmisrnghm 42245 srhmsubclem1 42398 rhmsubcALTVlem3 42431 eluz2cnn0n1 42626 regt1loggt0 42655 rege1logbrege0 42677 rege1logbzge0 42678 relogbmulbexp 42680 |
Copyright terms: Public domain | W3C validator |