![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 280. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5bir 233 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | syl6ib 241 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: aleximi 1799 sspwb 4947 ssopab2b 5031 wetrep 5136 imadif 6011 ssoprab2b 6754 suceloni 7055 tfinds2 7105 iiner 7862 fiint 8278 dfac5lem5 8988 axpowndlem3 9459 uzind 11507 isprm5 15466 funcres2 16605 fthres2 16639 ipodrsima 17212 subrgdvds 18842 hausflim 21832 dvres2 23721 axlowdimlem14 25880 atabs2i 29389 esum2dlem 30282 nn0prpw 32443 bj-hbext 32826 heibor1lem 33738 prter2 34485 dvelimf-o 34533 frege70 38544 frege72 38546 frege93 38567 frege110 38584 frege120 38594 pm11.71 38914 sbiota1 38952 |
Copyright terms: Public domain | W3C validator |