![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version |
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | 3imp 1102 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 3imp2 1443 3impexp 1452 oprabid 6841 wfrlem12 7596 isinf 8340 axdc3lem4 9487 iccid 12433 difreicc 12517 relexpaddg 14012 issubg4 17834 reconn 22852 bcthlem2 23342 dvfsumrlim3 24015 ax5seg 26038 axcontlem4 26067 usgr2wlkneq 26883 frgrwopreg 27498 cvmlift3lem4 31632 fscgr 32514 idinside 32518 brsegle 32542 seglecgr12im 32544 imp5q 32633 elicc3 32638 areacirclem1 33831 areacirclem2 33832 areacirclem4 33834 areacirc 33836 filbcmb 33866 fzmul 33868 islshpcv 34861 cvrat3 35249 4atexlem7 35882 relexpmulg 38522 gneispacess2 38964 iunconnlem2 39688 fmtnoprmfac1 42005 fmtnoprmfac2 42007 |
Copyright terms: Public domain | W3C validator |