![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impa | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impa.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 629 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: ex3 1282 3impdir 1422 syl3an9b 1437 biimp3a 1472 stoic3 1741 rspec3 2964 rspc3v 3356 raltpg 4268 rextpg 4269 disjiun 4672 otthg 4983 3optocl 5231 fun2ssres 5969 funtpg 5980 funssfv 6247 foco2OLD 6420 f1elima 6560 ot1stg 7224 ot2ndg 7225 smogt 7509 omord2 7692 omword 7695 oeword 7715 omabslem 7771 ecovass 7897 fpmg 7925 findcard 8240 cdaun 9032 cfsmolem 9130 ingru 9675 addasspi 9755 mulasspi 9757 ltapi 9763 ltmpi 9764 axpre-ltadd 10026 leltne 10165 dedekind 10238 recextlem2 10696 divdiv32 10771 divdiv1 10774 lble 11013 fnn0ind 11514 supminf 11813 xrleltne 12016 xrmaxeq 12048 xrmineq 12049 iccgelb 12268 elicc4 12278 iccsplit 12343 elfz 12370 fzrevral 12463 modabs 12743 expgt0 12933 expge0 12936 expge1 12937 mulexpz 12940 expp1z 12949 expm1 12950 digit1 13038 faclbnd4 13124 faclbnd5 13125 s3eqs2s1eq 13729 abssubne0 14100 binom 14606 dvds0lem 15039 dvdsnegb 15046 muldvds1 15053 muldvds2 15054 dvdscmulr 15057 dvdsmulcr 15058 divalgmodcl 15178 gcd2n0cl 15278 gcdaddm 15293 lcmdvds 15368 prmdvdsexp 15474 rpexp1i 15480 monpropd 16444 prfval 16886 xpcpropd 16895 curf2ndf 16934 eqglact 17692 mndodcongi 18008 oddvdsnn0 18009 efgi0 18179 efgi1 18180 lss0cl 18995 scmatscmid 20360 pmatcollpw3fi1lem1 20639 cnpval 21088 cnf2 21101 cnnei 21134 lfinun 21376 ptpjcn 21462 cnmptk2 21537 flfval 21841 cnmpt2plusg 21939 cnmpt2vsca 22045 ustincl 22058 xbln0 22266 blssec 22287 blpnfctr 22288 mopni2 22345 mopni3 22346 nmoval 22566 nmocl 22571 isnghm2 22575 isnmhm2 22603 cnmpt2ds 22693 metdseq0 22704 cnmpt2ip 23093 caucfil 23127 mbfimasn 23446 dvnf 23735 dvnbss 23736 coemul 24053 dvply1 24084 dvnply2 24087 pserdvlem2 24227 logeftb 24375 advlogexp 24446 cxpne0 24468 cxpp1 24471 lgsne0 25105 f1otrg 25796 ax5seglem9 25862 uhgrn0 26007 upgrn0 26029 upgrle 26030 uhgrwkspthlem2 26706 frgrhash2wsp 27312 sspval 27706 sspnval 27720 lnof 27738 nmooval 27746 nmooge0 27750 nmoub3i 27756 bloln 27767 nmblore 27769 hosval 28727 homval 28728 hodval 28729 hfsval 28730 hfmval 28731 homulass 28789 hoadddir 28791 nmopub2tALT 28896 nmfnleub2 28913 kbval 28941 lnopmul 28954 0lnfn 28972 lnopcoi 28990 nmcoplb 29017 nmcfnlb 29041 kbass2 29104 nmopleid 29126 hstoh 29219 mdi 29282 dmdi 29289 dmdi4 29294 supxrnemnf 29662 reofld 29968 bnj605 31103 bnj607 31112 bnj1097 31175 elno2 31932 topdifinffinlem 33325 lindsdom 33533 lindsenlbs 33534 ftc1anclem2 33616 fzmul 33667 nninfnub 33677 exidreslem 33806 grposnOLD 33811 ghomf 33819 rngohomf 33895 rngohom1 33897 rngohomadd 33898 rngohommul 33899 rngoiso1o 33908 rngoisohom 33909 igenmin 33993 lkrcl 34697 lkrf0 34698 omlfh1N 34863 tendoex 36580 3anrabdioph 37663 3orrabdioph 37664 rencldnfilem 37701 expmordi 37829 dvdsabsmod0 37871 jm2.18 37872 jm2.25 37883 jm2.15nn0 37887 addrfv 38990 subrfv 38991 mulvfv 38992 bi3impa 39007 ssfiunibd 39837 supminfxr 40007 limsupgtlem 40327 xlimmnfv 40378 xlimpnfv 40382 dvnmul 40476 stoweidlem34 40569 stoweidlem48 40583 sge0cl 40916 sge0xp 40964 ovnsubaddlem1 41105 ovnovollem3 41193 aovmpt4g 41602 gboge9 41977 |
Copyright terms: Public domain | W3C validator |