![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version |
Description: The importation inference 3imp 1101 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1117 by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
3 | 2 | 3imp231 1104 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 3com12 1117 sotri3 5676 elfz1b 12594 gausslemma2dlem1a 25281 upgrewlkle2 26704 pthdivtx 26827 clwwlkinwwlk 27161 clwlksfclwwlkOLD 27208 upgr3v3e3cycl 27324 upgr4cycl4dv4e 27329 numclwwlk2lem1lem 27490 frgrregord013 27555 ax6e2ndeqALT 39658 fmtnofac2 41983 |
Copyright terms: Public domain | W3C validator |