![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version |
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3impd 1442 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 444 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: wereu 5262 ovg 6964 fisup2g 8539 fiinf2g 8571 cfcoflem 9286 ttukeylem5 9527 dedekindle 10393 grplcan 17678 mulgnnass 17777 mulgnnassOLD 17778 dmdprdsplit2 18645 mulgass2 18801 lmodvsdi 19088 lmodvsdir 19089 lmodvsass 19090 lss1d 19165 islmhm2 19240 lspsolvlem 19344 lbsextlem2 19361 cygznlem2a 20118 isphld 20201 t0dist 21331 hausnei 21334 nrmsep3 21361 fclsopni 22020 fcfneii 22042 ax5seglem5 26012 axcont 26055 grporcan 27681 grpolcan 27693 slmdvsdi 30077 slmdvsdir 30078 slmdvsass 30079 mclsppslem 31787 broutsideof2 32535 poimirlem31 33753 broucube 33756 frinfm 33843 crngm23 34114 pridl 34149 pridlc 34183 dmnnzd 34187 dmncan1 34188 paddasslem5 35613 sfprmdvdsmersenne 42030 |
Copyright terms: Public domain | W3C validator |