![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version |
Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3imp 1101 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | imp 444 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 3an1rs 1414 reupick2 4021 indcardi 8977 ledivge1le 12015 expcan 13028 ltexp2 13029 leexp1a 13034 expnbnd 13108 cshf1 13677 rtrclreclem4 13921 relexpindlem 13923 ncoprmlnprm 15559 xrsdsreclblem 19915 matecl 20354 scmateALT 20441 riinopn 20836 neindisj2 21050 filufint 21846 tsmsxp 22080 ewlkle 26632 uspgr2wlkeq 26673 spthonepeq 26779 wwlksm1edg 26911 clwwisshclwws 27059 clwwlknwwlksn 27087 clwwlknwwlksnOLD 27088 clwwlkinwwlk 27090 wwlksext2clwwlk 27108 3vfriswmgr 27353 homco1 28890 homulass 28891 hoadddir 28893 mblfinlem3 33680 zerdivemp1x 33978 athgt 35162 psubspi 35453 paddasslem14 35539 eluzge0nn0 41749 iccpartigtl 41786 lighneal 41955 |
Copyright terms: Public domain | W3C validator |