![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3halfnz | Structured version Visualization version GIF version |
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
3halfnz | ⊢ ¬ (3 / 2) ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 11445 | . 2 ⊢ 1 ∈ ℤ | |
2 | 2cn 11129 | . . . . 5 ⊢ 2 ∈ ℂ | |
3 | 2 | mulid2i 10081 | . . . 4 ⊢ (1 · 2) = 2 |
4 | 2lt3 11233 | . . . 4 ⊢ 2 < 3 | |
5 | 3, 4 | eqbrtri 4706 | . . 3 ⊢ (1 · 2) < 3 |
6 | 1re 10077 | . . . 4 ⊢ 1 ∈ ℝ | |
7 | 3re 11132 | . . . 4 ⊢ 3 ∈ ℝ | |
8 | 2re 11128 | . . . . 5 ⊢ 2 ∈ ℝ | |
9 | 2pos 11150 | . . . . 5 ⊢ 0 < 2 | |
10 | 8, 9 | pm3.2i 470 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
11 | ltmuldiv 10934 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2))) | |
12 | 6, 7, 10, 11 | mp3an 1464 | . . 3 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
13 | 5, 12 | mpbi 220 | . 2 ⊢ 1 < (3 / 2) |
14 | 3lt4 11235 | . . . 4 ⊢ 3 < 4 | |
15 | 2t2e4 11215 | . . . . 5 ⊢ (2 · 2) = 4 | |
16 | 15 | breq2i 4693 | . . . 4 ⊢ (3 < (2 · 2) ↔ 3 < 4) |
17 | 14, 16 | mpbir 221 | . . 3 ⊢ 3 < (2 · 2) |
18 | 1p1e2 11172 | . . . . 5 ⊢ (1 + 1) = 2 | |
19 | 18 | breq2i 4693 | . . . 4 ⊢ ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2) |
20 | ltdivmul 10936 | . . . . 5 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
21 | 7, 8, 10, 20 | mp3an 1464 | . . . 4 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
22 | 19, 21 | bitri 264 | . . 3 ⊢ ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2)) |
23 | 17, 22 | mpbir 221 | . 2 ⊢ (3 / 2) < (1 + 1) |
24 | btwnnz 11491 | . 2 ⊢ ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ) | |
25 | 1, 13, 23, 24 | mp3an 1464 | 1 ⊢ ¬ (3 / 2) ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 < clt 10112 / cdiv 10722 2c2 11108 3c3 11109 4c4 11110 ℤcz 11415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-n0 11331 df-z 11416 |
This theorem is referenced by: nn0o1gt2 15144 |
Copyright terms: Public domain | W3C validator |