![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1283 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 446 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: 3anidm12 1423 mob 3421 eqbrrdva 5324 fco 6096 f1oiso2 6642 frxp 7332 onfununi 7483 smoel2 7505 smoiso2 7511 3ecoptocl 7882 dffi2 8370 elfiun 8377 dif1card 8871 infxpenlem 8874 cfeq0 9116 cfsuc 9117 cfflb 9119 cfslb2n 9128 cofsmo 9129 domtriomlem 9302 axdc3lem4 9313 axdc4lem 9315 ttukey2g 9376 tskxpss 9632 grudomon 9677 elnpi 9848 dedekind 10238 nn0n0n1ge2b 11397 fzind 11513 suprzcl2 11816 icoshft 12332 fzen 12396 hashbclem 13274 seqcoll 13286 relexpsucr 13813 relexpsucl 13817 relexpfld 13833 shftuz 13853 mulgcd 15312 algcvga 15339 lcmneg 15363 ressbas 15977 resslem 15980 ressress 15985 psss 17261 tsrlemax 17267 isnmgm 17293 gsummgmpropd 17322 iscmnd 18251 ring1ne0 18637 unitmulclb 18711 isdrngd 18820 issrngd 18909 rmodislmodlem 18978 rmodislmod 18979 abvn0b 19350 mpfaddcl 19582 mpfmulcl 19583 pf1addcl 19765 pf1mulcl 19766 isphld 20047 fitop 20753 hausnei2 21205 ordtt1 21231 locfincmp 21377 basqtop 21562 filfi 21710 fgcl 21729 neifil 21731 filuni 21736 cnextcn 21918 prdsmet 22222 blssps 22276 blss 22277 metcnp3 22392 hlhil 23260 volsup2 23419 sincosq1sgn 24295 sincosq2sgn 24296 sincosq3sgn 24297 sincosq4sgn 24298 sinq12ge0 24305 bcmono 25047 iswlkg 26565 umgrwwlks2on 26923 3cyclfrgrrn1 27265 grpodivf 27520 ipf 27696 shintcli 28316 spanuni 28531 adjadj 28923 unopadj2 28925 hmopadj 28926 hmopbdoptHIL 28975 resvsca 29958 resvlem 29959 submateq 30003 esumcocn 30270 bnj1379 31027 bnj571 31102 bnj594 31108 bnj580 31109 bnj600 31115 bnj1189 31203 bnj1321 31221 bnj1384 31226 climuzcnv 31691 fness 32469 neificl 33679 metf1o 33681 isismty 33730 ismtybndlem 33735 ablo4pnp 33809 divrngcl 33886 keridl 33961 prnc 33996 lsmsatcv 34615 llncvrlpln2 35161 lplncvrlvol2 35219 linepsubN 35356 pmapsub 35372 dalawlem10 35484 dalawlem13 35487 dalawlem14 35488 dalaw 35490 diaf11N 36655 dibf11N 36767 ismrcd1 37578 ismrcd2 37579 mzpincl 37614 mzpadd 37618 mzpmul 37619 pellfundge 37763 imasgim 37987 stoweidlem2 40537 stoweidlem17 40552 |
Copyright terms: Public domain | W3C validator |