![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version |
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 449 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | 3expd 1306 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: 3anassrs 1313 pm2.61da3ne 2912 po2nr 5077 predpo 5736 fliftfund 6603 frfi 8246 fin33i 9229 axdc3lem4 9313 relexpaddd 13838 iscatd 16381 isfuncd 16572 isposd 17002 pospropd 17181 imasmnd2 17374 grpinveu 17503 grpid 17504 grpasscan1 17525 imasgrp2 17577 dmdprdd 18444 pgpfac1lem5 18524 imasring 18665 islmodd 18917 lmodvsghm 18972 islssd 18984 islmhm2 19086 psrbaglefi 19420 mulgghm2 19893 isphld 20047 riinopn 20761 ordtbaslem 21040 subbascn 21106 haust1 21204 isnrm2 21210 isnrm3 21211 lmmo 21232 nllyidm 21340 tx1stc 21501 filin 21705 filtop 21706 isfil2 21707 infil 21714 fgfil 21726 isufil2 21759 ufileu 21770 filufint 21771 flimopn 21826 flimrest 21834 isxmetd 22178 met2ndc 22375 icccmplem2 22673 lmmbr 23102 cfil3i 23113 equivcfil 23143 bcthlem5 23171 volfiniun 23361 dvidlem 23724 ulmdvlem3 24201 ax5seg 25863 axcontlem4 25892 axcont 25901 grporcan 27500 grpoinveu 27501 grpoid 27502 cvxpconn 31350 cvxsconn 31351 mclsax 31592 mclsppslem 31606 broutsideof2 32354 nn0prpwlem 32442 fgmin 32490 poimirlem27 33566 poimirlem29 33568 poimirlem31 33570 cntotbnd 33725 heiborlem6 33745 heiborlem10 33749 rngonegmn1l 33870 rngonegmn1r 33871 rngoneglmul 33872 rngonegrmul 33873 crngm23 33931 prnc 33996 pridlc3 34002 dmncan1 34005 lsmsat 34613 eqlkr 34704 llncmp 35126 2at0mat0 35129 llncvrlpln 35162 lplncmp 35166 lplnexllnN 35168 lplncvrlvol 35220 lvolcmp 35221 linepsubN 35356 pmapsub 35372 paddasslem16 35439 pmodlem2 35451 lhp2lt 35605 ltrneq2 35752 cdlemf2 36167 cdlemk34 36515 cdlemn11pre 36816 dihord2pre 36831 |
Copyright terms: Public domain | W3C validator |