![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtr3i 2784 | . 2 ⊢ 𝐵 = 𝐶 |
5 | 1, 4 | eqtr3i 2784 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-cleq 2753 |
This theorem is referenced by: indif2 4013 dfif5 4246 resdm2 5785 co01 5811 funiunfv 6669 dfdom2 8147 1mhlfehlf 11443 crreczi 13183 rei 14095 bpoly3 14988 bpoly4 14989 cos1bnd 15116 rpnnen2lem3 15144 rpnnen2lem11 15152 m1bits 15364 6gcd4e2 15457 3lcm2e6 15642 karatsuba 15994 karatsubaOLD 15995 ring1 18802 sincos4thpi 24464 sincos6thpi 24466 1cubrlem 24767 cht3 25098 bclbnd 25204 bposlem8 25215 ex-ind-dvds 27629 ip1ilem 27990 mdexchi 29503 disjxpin 29708 xppreima 29758 df1stres 29790 df2ndres 29791 dpmul100 29914 0dp2dp 29926 dpmul 29930 dpmul4 29931 xrge0slmod 30153 cnrrext 30363 ballotth 30908 hgt750lemd 31035 poimirlem3 33725 poimirlem30 33752 mbfposadd 33770 asindmre 33808 areaquad 38304 inductionexd 38955 stoweidlem26 40746 3exp4mod41 42043 |
Copyright terms: Public domain | W3C validator |